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Abstract

A global twistor correspondence is established for neutral self-dual conformal structures with «-surface foliation when the
structure is close to the standard structure on S2 x S2. We need to introduce some singularity for the «-surface foliation such that
the leaves intersect on a fixed 2-sphere. In this correspondence, we prove that a natural double fibration is induced on some quotient
spaces which is equal to the standard double fibration for the standard Zoll projective structure. We also give local general forms
of neutral self-dual metrics with «-surface foliation.
© 2007 Elsevier B.V. All rights reserved.

JGP SC: Differential geometry; Spinors and twistors
MSC: 53C28; 321.25; 53C50

Keywords: Zollfrei metric; Twistor correspondence

1. Introduction

LeBrun and Mason investigated two kinds of twistor-type correspondences in [7,8]. One of them is the
correspondence for the Zoll projective structure on two-dimensional manifolds [7]. A projective structure is an
equivalence class of torsion-free connections under the projective equivalence, where two torsion-free connections are
called projectively equivalent if they have exactly the same unparameterized geodesics. A projective structure is called
Zoll when all the maximal geodesics are closed. LeBrun and Mason proved that there is a one-to-one correspondence
between

e equivalence classes of orientable Zoll projective structures (B, [V]), and
e equivalence classes of totally real embeddings ¢ : RP? — CP?,

when they are close to the standard structures. Here B is identified with the moduli space of holomorphic disks on
CP? whose boundaries are contained in N = ((RP?).

The second twistor correspondence constructed by LeBrun and Mason is the one for four-dimensional manifolds
equipped with a neutral self-dual Zollfrei conformal structure [8]. An indefinite metric on a four-dimensional manifold
is called neutral when the signature is (4 -+ ——), and here we consider the indefinite conformal structures represented
by such metrics. For a neutral metric on a 4-manifold, we can define the self-duality condition like in the Riemannian
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case (cf. [4,5,8]). An indefinite metric is called Zollfrei when all the maximal null geodesics are closed. In the neutral
four-dimensional case, the Zollfrei condition and the self-dual condition depend only on the conformal class [8].
LeBrun and Mason introduced the notion of space—time orientation for a 4-manifold with neutral metric, and proved
that there is a one-to-one correspondence between

e equivalence classes of space—time oriented self-dual Zollfrei conformal structures (M, [g]), and
e equivalence classes of totally real embeddings ¢ : RP3 — CP3,

when they are close to the standard structures. Here M is identified with the moduli space of holomorphic disks
on CP3 whose boundaries are contained in P = ((RP?). They also proved that only % x S? admits a space—time
oriented neutral self-dual Zollfrei conformal structure.

These two twistor correspondences are real, non-analytic and global versions of two of the three twistor
correspondences explained in [6] by Hitchin. The three are twistor correspondences for (1) complex surfaces with
projective structure, (2) complex 4-manifolds with anti-self-dual conformal structure and (3) complex 3-manifolds
with Einstein—Weyl structure. The corresponding twistor space is given by complex manifolds Z with an embedded
CP' whose normal bundle is O(1), O(1) & O(1) or O(2) respectively. The geometric structures (1), (2) and (3) are
given as natural structures on the moduli spaces of such an embedded CP! in Z. Hitchin’s argument is local, and the
description is based on holomorphic category. The twistor space for (1) is sometimes called mini-twistor space (cf.
(2D.

The twistor correspondence for (2) was originally discovered by Penrose [12], and the Riemannian version of
this twistor correspondence is given by Atiyah, Hitchin and Singer [1]. In the Riemannian case, self-dual conformal
structure is automatically analytic since the equation is elliptic. Moreover the family of rational curves on twistor
space forms a globally defined foliation, and, for this reason, it is straightforward to translate the local description to
the global case.

On the other hand, in the cases of LeBrun and Mason, the equations have non-analytic solutions in general, and
the family of CP! in the twistor space does not form a foliation different from the Riemannian case one. LeBrun
and Mason overcame these difficulties by using two techniques: the first one is using the family of holomorphic disks
instead of that of CPP!, and the second one is setting in terms of the Zollfrei condition. Notice that the Zollfrei condition
is an open condition in the space of neutral self-dual metrics (cf. [8]).

Recently, there has been some development concerning the reduction of the neutral self-dual conformal structures
on 4-manifolds (M, [g]) (cf. [2,4,11]). Dunajski and West [4] proved that, if there is a null conformal Killing vector
field on M, then there is a natural null surface foliation containing this Killing field, and that a natural projective
structure is induced on the leaf space. Calderbank generalized this argument and weakened the assumption; the
weakened assumption is given as a property for a null surface foliation on M. Both arguments are local, and formulated
in a smooth category. They also studied the analytic case; then they showed that, under these conditions, a twistor
correspondence of case (2) induces a twistor correspondence of case (1) as a reduction.

It would be natural to expect a theory of reduction for the two global twistor correspondences of LeBrun and
Mason. The local theory of Dunajski, West and Calderbank would suggest that the natural class of such a theory is
neutral self-dual Zollfrei conformal structures with closed null surface foliation. Even the standard conformal structure
(S%x S2, [g0]), however, is not contained in this class. Actually, on (S%x S2, [go]), any two closed a-surfaces intersect
at exactly two points, so it is impossible to find a closed «-surface foliation, where the «-surface is one of the two
kinds of null surfaces. The purpose of this paper is to set a nice class of neutral self-dual Zollfrei conformal structures
equipped with an «-surface foliation with some singularity explained later. Then we prove that there is a one-to-one
correspondence similar to the twistor correspondence of LeBrun and Mason, and that the reduction works globally.

In our situation, the induced projective structure on the leaf space is proved to be the standard Zoll projective
structure. It would be an interesting problem to find some different formulations so that non-standard Zoll projective
structures are induced by the reduction.

The organization of the paper is as follows. In Sections 2 and 3, we review the definitions and properties for
projective structures and neutral self-dual conformal structures respectively. In particular in Section 3, we prepare an
explicit description without using spinor calculus, which enables us to establish the general forms of neutral self-dual
metrics with «-surface foliation in Section 4. In Section 5, we define a notion of basic «-surface foliation which we
need to carry out the reduction. Calderbank defined the notion of self-dual «-surface foliation. In Appendix A, we
show that basic is equivalent to self-dual under the assumption of self-duality for the metric. The basic foliation,
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however, rather fits to our description. By using this notion, we give a simple proof of the above results of Dunajski
and West in Appendix B.

We treat the global situation in Sections 6 and 7. In Section 6, we formulate a class of neutral self-dual conformal
structures with a suitable «-surface family, and we state the main theorem (Theorem 32). There is a low dimensional
or mini-twistor version of the main theorem, and we prove this version in the rest of Section 6. The proof of the main
theorem is presented in Section 7.

In this article, we follow LeBrun and Mason’s conventions of orientations and the terminology of the «-surface and
B-surface. We assume that all the manifolds and metrics are C*°, and that the topology of maps between manifolds is
C®°-topology.

2. Projective structure

Let B be an oriented two-dimensional manifold, and let W = P(T'B ® C) and Wr = P(TB) be the
projectivizations. Let p : W — B and pr : Wr — B be the projections. Then every w € W \ Wr corresponds to
a complex line L, C Tp B ® C, where b = p(w). Since T,B @ C = L,, & Ly, w defines a complex structure on
Ty B. Let W be one of the two connected components of VW \ Wgr whose element defines an orientation preserving
complex structure, and we put YV ° as the other component. Let W-. be the closures of W7 ; then we have

W =W UW° UWg =W, UW_.

Let V C B be a coordinate neighborhood with an oriented coordinate (y°, y!). By putting 3; = 837 we can
trivialize YW = P(T¢B) on V via
CP' x V— Wiy = (150 : 1. b) = [5odo + L1815 (1)

Notice that Wy |y =~ {(¢,b) € CP! x V : Im¢ > 0 or { = oo}, where { = ¢/ is the fiber coordinate.
Let V be a torsion-free connection on B; then the connection form respecting the coordinate (y°, y!) is given by
the gl(2, R)-valued 1-form w:
w:(a);), Vo =a)38,'.
The horizontal lift of a tangent vector e € T), B at ;f d; € TpB is

0

E:e—w?{jagl )
Projecting to P(T B), the horizontal lift of e on W at ¢ = &1 /¢p is given by

~ d

e=e— (a)(]) + ;(a)} — a)g) — Cza)(l)> (e)i. 3)

Now we define a rank 1 distribution Lg on W as the tautological lifts, i.e. LR (x,¢) i the horizontal lift of the

tangent line (dg + ¢d1), where x € B and ¢ € RP! = WR x is the local fiber coordinate. From (3), we obtain
Lr = (n) where

ad
n= 00+ £01 — (@) + (] - o) — %)) G0+ g5 @

We can define a complex distribution L on W, by L = (n), where n is extended to the vector field on W, by the
analytic continuation for £ € CP'. By definition, we have Liw, =Lr®C.If weput K = L + (%), then K defines

an almost complex structure on W, \ Wk since K satisfies TW, ® C = K @ K on W, \ Wk.
Torsion-free connections V and V' on B are called projectively equivalent if and only if they define exactly the
same unparameterized geodesics. We call a projective structure for a projectively equivalent class [V].

Proposition 1 (LeBrun and Mason [7]).

(1) L and K are defined only by [V],
(2) L and K are integrable.
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Definition 2. A projective structure (B, [V]) is called Zoll if and only if all of the maximal geodesics on B are closed.

Theorem 3 (LeBrun and Mason [7]). There is a one-to-one correspondence between

e equivalence classes of oriented Zoll projective structures (B, [V]), and
e equivalence classes of totally real embeddings | : RP*> — CP?,

when they are close to the standard structures. The correspondence is characterized by a double fibration
B <p—(W+, WR) —q>((CIP’2, N), where N = «(RP?), p is the projection, and q is a surjection which is holomorphic
on the interior of Wh.

The rough sketch of the proof is the following. If (B, [V]) is given, then we can construct WV,, WR) equipped
with a rank 1 foliation on Wg. Collapsing this foliation, we obtain the space (CPP?, N). Conversely, if ¢ is given, then
there is a family of holomorphic disks in CP? such that the boundaries of disks are contained in N and that this family
defines a foliation on CPP> \ N. We also remark that each holomorphic disk in this family is characterized by the
condition: the relative homology class of the disk generates Hy(CP?, N) = Z. We define B to be the parameter space
of this family. Then a Zoll projective structure [V] on B is induced so that each closed geodesic is written in the form
poq~'(¢) for some ¢ € N. Notice that such a family of holomorphic disks is uniquely determined as a deformation
of the standard family if ¢ is close enough to the standard embedding.

3. Neutral metric

Let M be an oriented four-dimensional manifold, and let g be a neutral metric on M where a neutral metric is an
indefinite metric of split signature. An oriented local frame (e, e1, €2, e3) of the tangent bundle 7 M is called a null
tetrad if and only if its metric tensor g,,, = g(ey, €,) is given by

1

—1
g =(guw) = _1 : )

1

0 2
Notice that, if (e;,) is a null tetrad, then we obtain g(A, A) = det (:\\‘ i;) for a tangent vector A = ) A’e,. When we
make use of null tetrads, the structure group of 7'M reduces to the Lie group

$0(2,2):={PeSLA&R):"PgP =g}. (6)

SO (2, 2) has two connected components and we denote the identity component as SO (2, 2).

Definition 4 (Cf. [8]). M is called space—time orientable when the structure group of T M reduces to SOq(2, 2).

Let SL(2,R)4+ and SL(2,R)_ be copies of SL(2,R). For each (A, B) € SL(2,R);y x SL(2,R)_, the
transformation

(eo ez) o (eo ez) ‘g

el e3 e1 e3

defines an element of SOy (2, 2). In this way, we obtain a double covering SL(2, R)4 x SL(2, R)_ — SO¢(2, 2). The
corresponding Lie algebra isomorphism 0(2, 2) >~ s[(2, R); @ s[(2, R)_ is given by

a b e 0 a—d b a+d

C d 0 e 2 2

f 0 —-d b | d—al® p a+d |- 7
0 f ¢ —a ¢ 2 2

Taking M smaller, we can assume that M is space—time oriented and the structure group of 7 M lifts to SL(2, R);+ x
SL(2, R)_. Then we obtain a decomposition TM = ST ® S, and the Levi-Civita connection V on M induces the
connections V¥ on S*. §% are called the positive and negative spin bundles, and V* are called spin connections. If
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we take a local null tetrad (e, ) on T M, then V is represented by the connection form w, where w is a 0(2, 2)-valued
1-form, and the connection forms w* of V* are s[(2, R) . -valued 1-forms, which are defined as the components of
the decomposition of w by (7).

There is an eigenspace decomposition A2 = AT @ A~ with respect to Hodge’s #-operator, where A> = A2 TM
and AT are the eigenspaces for the eigenvalues £1. Let V be a null 2-plane in T M and vy, v> be the basis of V; then
the bivector v; A vy belongs to AT or A™.

2

Definition 5. Let V = (v, v2) C Ty M be a null 2-plane. V is called an a-plane if v; A vy € AT, and V is called a
B-plane if v A vy € A7. Let S C M be an embedded surface and suppose that S is totally null, i.e. 7, S C T, M is
null for every x € S. S is called an «-surface if 7, S is an «-plane for every x € S. A B-surface is defined in a similar
way.

Let (M, g) be a space—-time oriented neutral manifold, and (e,,) be a null tetrad on an open set U C M. From now
on, we define e> = ¢, e3 = ¢ for later convenience. The following lemma is checked by a direct calculation.

Lemma 6. AT = (@1, 92, ¢3), A~ = (Y1, Y2, ¥3) , where

Y1 =ey Aej, @2 = Po A b1, ¢3=%(60/\¢1—61A¢0), ©
Y1 = eo A ¢o, Yo =e1 A1, 1//3=%(60/\¢1+61/\¢0)-

The neutral metric g induces indefinite metrics on A* whose metric tensors are both given by the following matrix
with respect to the frames (8):

0 1 0
h=|1 0 0 |. ©)]
0 0 -1
Let b be a Lie algebra defined by

a 0 ¢
h={XeglQR) :'Xh+hX=0}={[0 —a b
b ¢ 0

The Levi-Civita connection V induces connections on A* whose connection forms are represented by an h-valued
1-form with respect to the frames (8).
We can check that the exterior product representation associated with A™ is

Z Z 8 (e) a—d 0 V2¢
o F 0 —d b — 0 d—a ~2b]|. (10)
0 f ¢ -a V2b V2 0

So the connection form of the induced connection on A~ is given by the h-valued 1-form 8 = (Olk ) = p~ (w), where w
is the connection form of the Levi-Civita connection. This connection naturally induces the connection on A, where
Ac = A~ ® Cis the complexification. The horizontal lift of a tangent vector e on M at Aoy e Ac s

a
Ak

Let Z = {[y] € P(Ag) : g, ¥) = O and Zg = {[y] € P(A7) @ g(¥,¥) = O} Let p : Z — M and
PR : Zr — M be the projections. Then a trivialization of Z on the open set U C M is given by

é¢=ec—0f(e)r (11)

LiCP x U5 Zy s (G0 : 41l x) — (8% + L2 + V20003 1s (12)
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This is nothing but the correspondence between the fiber coordinate [y : ¢;] € CP' and the complex B-plane
(Soeo + C1e1, Zogo + C11) , since we have

(Coeo + ¢1e1) A (Godo + C191) = 4“02101 + ¢ + V250019,

Restricting the fiber coordinate [¢p : ¢1] to RP!, we also obtain a trivialization of ZRr, and each point in Zp
corresponds to a real B-plane in the same manner.

Let B, € TxM ® C be the complex B-plane corresponding to u € Z \ Zr, where x = p(u). Since
ITMQC=p8,& ﬂ_u, z defines a complex structure J on T, M, and it is easy to check that J preserves the metric g.
Let Z7 be one of the two connected components of Z \ Zr whose element defines an orientation preserving complex
structure, and we put Z° as the other component. Let Z4 be the closures of Z7; then we have

Z=Z°UZ°UZr=Z2,UZ_.

Let Ac = P(Ag) be the projectivization; then we obtain, at (A, A%, 2%) = (47, ¢7, V2¢001),

0 0
Ty (0{‘le> = (b +¢d—a)— §2c> Ly <§> , (13)

where { = {1/ is the non-homogeneous coordinate. From (11), the horizontal lift of the tangent vector e on M to Z
is

ad
ac’
We can define a rank 2 distribution Eg on Zg as the tautological lifts, i.e. ER () is the horizontal lift of the

B-plane (eq + Cer, ¢po + Cp1), where x € M and ¢ € RP! = ZR.x. ER is called the twistor distribution [4] or the
Lax distribution [2]. From (14), we obtain Er = (m, m;) where

F=e— <b+§(d—a)—§2c) (e) (14)

my =eo+ger + Q1(5)d;, Q1(0) = —(b+£(d — a) — ¢*c)(eo + Len),
my = ¢o + {1+ 02(8)d;, 02(¢) = —(b +¢(d — a) — £%¢)(go + L ).

We can define a complex distribution £ on Z4 by E = (mj, my), where m; and m; are extended o the vector fields
on Z, analytically for { € CP!. By definition, we have Elz, =ErQC.If weput D = E + (%), then D defines

5)

an almost complex structure on Z \ Zg since TZ; ® C = D @ D on Z, \ Zg. The following theorem is basic and
proved in [8], and see also [4].

Theorem 7. (1) E and D are defined only by the conformal class [g].
(2) ER is Frobenius integrable if and only if [g] is self-dual. Moreover; the almost complex structure on Z1 \ Zr
defined from D is integrable if and only if [g] is self-dual.

Definition 8. Let (M, [g]) be a neutral self-dual conformal structure; then (M, [g]) is called Zollfrei if and only if all
of the maximal null geodesics on M are closed.

Theorem 9 (LeBrun and Mason [8]). There is a one-to-one correspondence between

e equivalence classes of space—time oriented self-dual Zollfrei conformal structures (M, [g]), and
e equivalence classes of totally real embeddings 1 : RP> — CP3,

when they are close to the standard structures. The correspondence is characterized by a double fibration
M <p—(Z+, ZRr) —q>((C]P’3, P), where P = ((RP3), p is the projection, and q is a surjection which is holomorphic
on the interior of Z.

The proof is conceptually similar to that of Theorem 3. M is defined from ¢ as the parameter space of the family
of holomorphic disks in (CP3, P) foliating CP? \ P. Such a family is uniquely determined if ¢ is close enough to the
standard embedding.
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4. a-surface foliation

Let (M, g) be a 4-manifold with a neutral metric, and we now suppose that there is a smooth a-surface foliation
@ : M — B,i.e. w is a smooth surjection to a 2-manifold B such that each fiber @~ L(b) on b € B is an a-surface.
Letx € M and b = w(x) € B; then we can take a local coordinate (x°, x!, x2, x3) around x and a coordinate

(»°, y!) around b so that (x°, x!, x2, x3) lg(yo, yh = (% xh). Let V = ( 9, 9.y be the vertical distribution, and

X2 ax3
we use the notation d,x = axiﬂ and so on.

Proposition 10. There is a null tetrad (eq, e1, ¢o, ¢1) on T M which satisfies

(1) eg = 3,0 + g and ey = 0,1 + a1 for some vertical vector fields ag, a1 € I'(V),
(2) ¢o and ¢y are vertical, i.e. ¢, 1 € I'(V).

Proof. We take ¢( and e as follows. Let V' be an a-plane distribution which is transverse to V everywhere, where

V' is not necessary integrable. Since TM =V & V', the map @, : V' = @w*TB is an isomorphism, and we can take
eo, e1 € I'(V') so that wy(e;) = 8},,- fori =0, 1. If we puto; =e¢; — 0,i, thena; € I'(V), so (1) holds.
Now ¢ and ¢; are uniquely determined so that (2) holds. Actually, if we put ¢o = ad,> + bd,3, then we have

=1\  [(g(0,1,0,2) g(0,1,0:3)\ (a
(A 8(0,0,0,2) g(0,0,0,3) b

from g(ey, o) = —1 and g(ep, o) = 0. If the 2 x 2 matrix in the right hand side is not invertible, then there
is a pair of real numbers (p,q) # (0, 0) such that g(d,0, pd,2 + g9,3) = g(9,1, pd,2 + qd,3) = 0, and then
8(Oyn, pd,2 +¢qd,3) = 0for u =0, 1, 2, 3. This contracts to the non-degeneracy of g, so the matrix is invertible, and
(a, b) is determined uniquely. ¢ is determined uniquely in a similar way. [

We denote as w the connection form of the Levi-Civita connection with respect to the null tetrad (eg, e1, ¢o, ¢1).
Then w is a 0(2, 2)-valued 1-form, and we denote the elements in the same way as in (10).

Lemma 11. The following equations hold:

e(¢o) = e(¢1) =0,
clen) =atgo) =<, 80~ G = (16)
e(er) = b(¢o) = d(¢1), ’

[P0, d11 = (b(do) + d($1))po — (a(¢o) + c(¢P1))é1,

[eo, po]l = —(d(eo) + f(P0))Po + c(en)Pi,

[eo, @11 = (b(eo) — f(@1))po — aleo)di, (I7)
le1, po]l = —d(e1)go + (c(er) — f(P0))P1,

le1, ¢1] = b(e1)po — (aler) + f(P1))¢1-

Proof. Since the Levi-Civita connection V is torsion-free, we have
[¢0, 1] = Vg1 — Vg, 0
= {e(po)er + b(do)po — algo)p1} — {e(d1)eo — d(P1)po + c(P1)¢1}.
Since V = (¢, ¢1) is integrable, we have [¢o, ¢1] € V. Then we obtain
e(g1) =e(go) =0 (18)

and the equation for [¢, ¢1] in (17). By a calculation similar to that for [e;, ¢;] € V, we can check all the equations.
a

In the rest of this section, we assume an additional condition: the neutral metric g is self-dual. Then m; and m»
defined in (15) satisfy the following properties.

Lemma 12. 0>(¢) = 0 and (¢o + $¢1) Q1(5) = 0.
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Proof. Since E is integrable, [mj, my] C (m, mp). Now we have
[my, ma] = [eo, pol + ¢2[er, p11 + ¢([eo, p1] + [en, pol) + (eo + Le1) Q2(£)dr — Qa2(Ley
+ Q1)1 — (P + ¢1) 02(£)d; + (Q1(2) 05(2) — 02(£) 01(£)) ;.
Since [eg, ¢o] € V and so on, we can write [m, my] = S({)m, by using some function 8(¢). At the same time, we

obtain the required equations. [

Lemma 13. The following equations hold:
e=0, a(e;) = b(gi) =c(¢;) =d(¢i) =0, b=c. (19)
In particular we obtain [¢g, ¢1] = 0 from (17).
Proof. From Q>(¢) = 0, we have
b(¢o) =0, (d —a)(¢o) + b(¢1) =0,
c(¢1) =0, (a —d)(¢1) + c(¢o) = 0.
Then the first and the second equations in (19) follow from these equations and (16).
Now let Q1(2) = qo + 1 + q20* + q3¢ %, ie.
g0 = —b(eo), q1 = —(d — a)(eo) — b(e1), 20)
q3 = c(e1), q2 = (a — d)(e1) + c(ep).

We can write [m, my] = B(¢)my from the proof of Lemma 12, and we can put 8(¢) = Bo + B1¢ + B2 from the
relation of the degree; then from a direct calculation, we obtain

[eo, ¢ol = Bodo — qo ¢1,

[eo, ¢1]1+ [e1, dol = Bigo + (Bo — q1)P1,
le1, @11 = Badpo + (B1 — q2) 1,
0=(B—q3)¢1.

Comparing with (17), and using (20), we have b(e;) = c(e;). Since we already have b(¢;) = c(¢;), so we obtain
b=c. O

21

Lemma 14. The following equations hold:

¢ob(eg) = ¢1b(e1) =0,
o(a — d)(eo) = ¢1(d — a)(er) = dob(er) + p1b(eo). (22)
¢o(a —d)(er) = ¢1(d — a)(eo).

Proof. Directly deduced from (20) and (¢9 + £¢1)01(¢) =0. O

Proposition 15. Let g be a neutral self-dual metric on a four-dimensional manifold M and @ : M — B be an

a-surface foliation. Then there is a local coordinate (xo, x!, X2, x3) on M so that kerw, = (3,2, d,3) and that the

metric tensor for g can be written in the form

p r 0 1
s=en={0 4 3 0 23)
1 0 0 O
Moreover, p, q and r satisfy the following equations:
05p = d3q =0,
03p + 939 =0, @4)

O3 + 0203 p = 33r + 02d3q = 0,
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where 0, = 0xu. Conversely, for any functions p, q and r satisfying (24), the neutral metric defined by (23) is self-dual
and has a natural o-surface foliation.

Proof. For given (M, g) and @, we can take a coordinate (x°, x!, x2, x3) and a null tetrad (e, e1, ¢, ¢1) on M as
in Proposition 10. Since we have [¢g, ¢1] = 0 from Lemma 13, we can change the coordinates x2, x> to w?, w> so
that ¢ = 9,2, ¢1 = 9,,3. So we can start from ¢ = 9,2, ¢1 = 9,3. Then the metric tensor is written in the form (23),
since we have

g(do, 02) = g(eo — o, ¢po) =0,
g(01,02) = gler — a1, ¢po) = —
and so on.

Now we check that the metric in the form (23) is self-dual if and only if (24) holds. We take a frame on 7 M of the
form

1
eo = 0o + E(raz — pd3), {¢0 — 05)

1 = 03.
el :81+§(q82—r83), ¢ ’

Then (e, e1, ¢o, ¢1) is a null tetrad satisfying the conditions of Proposition 10. Calculating [e;, ¢;] and so on, and
comparing with (17), we have
2a(eg) = —03p, 2b(ep) = 0 p, 2d(eg) = d3q + 20,1 26)
2a(e;) = —0dap — 2037, 2b(e1) = —oaq, 2d(e1) = 029.
We obtain (24) by evaluating these equations using (22). U

Remark 16. The form of the metric (23) coincides with the Walker canonical form (Theorem 1 of [14]; see also [9,
10]), and in the special case with the ASD null Kihler canonical form (Theorem 3.2 of [3]).

5. Basic foliation

Let (M, g) be a space—time oriented 4-manifold with a neutral metric, and let @ : M — B be an «-surface
foliation.

Definition 17. We define o as basic if and only if the curvature 2% of the spin connection V' on S defined by (7)
is basic, i.e. i (v) 21 = 0 for every vertical vector v € ker w,.

We use the same local descriptions as in Section 4. Then the following lemma is proved by a direct calculation.

Lemma 18. If g is self-dual, then @ is basic if and only if
¢ibej) = pi(a—d)(ej) =0 fori, j=0,1 (27

Moreover (27) is equivalent to the equations ¢iq, = 0 for i = 0,1 and n = 0,1,2,3, where Q1(§) =
90+ 918 + 8% + g3

Proposition 19. Suppose that @w is basic, and that g is self-dual; then @ is also basic for the conformal deformation
g = g, where ¢ is a non-vanishing function on M.

Proof. Let (eo, e1, ¢o, ¢1) be a null tetrad on (M, g) which satisfies the conditions in Proposition 10; then
(eo, €1, ¢0 qbl) (eo, e1, ¢ 1¢0 10 lqbl) is a null tetrad on (M, g) and satisfies the same conditions. Let my, my
be the frame of the twistor distribution defined by (15) with respect to g. In the same way, we define m;, m, with
respect to g, and we define

=& +¢é1 + 01()d;, 01(¢) = Go + @1& + G2 + §3¢°,
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and so on. Since Q2(¢) = Qz(g“) = 0 in this case, we have My = ¢ 'my. Now (m;, m»)

by Theorem 7, so we obtain m; = my and g, = ¢,. Then, for every i = 0,1 and n
®iGn = ¢~ '¢ig, = 0 by Lemma 18. Hence @ is also basic for g. [

(ﬁl mp) = Er
2,3,

0,1 we have

Proposition 20 (Cf. [2]). Let (M, g) be a 4-manifold with a neutral self-dual metric and w : M — B be an a-surface
foliation. If @ is basic, then there is a unique projective structure [V] which satisfies the following condition:

e the image of each B-surface by @ is a geodesic on B.

Conversely, if the above condition holds for some projective structure on B, then @ is basic.

Proof. We take coordinate neighborhoods U C M and V = @ (U) C B so that the coordinates are written in
the manner of Section 4. Let (eg, e1, ¢o, ¢1) be the null tetrad given by Proposition 10. Using the trivialization
of Zg, (x,¢) € U x RP! = ZR|y corresponds to the g-surface B(¢) = (eg + ¢er, do + ¢¢p1),. Then we have
o (B(2)) = (Byo +§8y1 ) (x)> and this is a line in T4, () B that corresponds to the point (w (x), {) € V x RP! ~ Wg.
In this way, we obtain a map Il : Zr — VWr which extends holomorphically to the map I : Z, — W,.

Using the above coordinates, we have

I(my) =+ ¢01 + Q1(0)dr, Q1) = qo+qi¢ +qt* + g3¢°,
IT,(my) = 0.

If there is a projective structure [V] on B satisfying the condition in the statement, then I, (E) = L, i.e. (n) =
(I (my1)). This equation holds only if ¢;g, = 0, so & is basic by Lemma 18.

Conversely, if @ is basic, then II,(E) defines a complex distribution on YW,. Then we can define a torsion-free
connection on B so that n = II,(mj). Actually, one of the examples of such a connection is given as follows. Now

b and a — d define a 1-form on V from (27), so we can define a connection whose connection form (wj.) is given by

0o_ 1 _
a)l—wo—b,and

wp(0y0) = (@ = d)(@,0) +b@By1),  @)(@,1) = b(@y0),
®](0,0) =b@,1), o] =(d—a)d,)+b(dy).

(28)

Then this connection is torsion-free and the equation n = II,(mp) holds on V = @ (U). This means that the condition
in the statement holds. Since the projective structure is exactly classified by the geodesics, such a projective structure
[V]is uniquely defined. [

Example 21. Let x% x1, x2, x3) be a coordinate on R*, and consider a metric g on R* whose metric tensor

g/,LU = g(ax/l,’ axv) is giVen by

p r 0 1
oy | P 10 p=—2xx7,
g - (gl]) - 0 _1 0 O ’ Where {r — (X2)2 + (X3)2
1 0 0 O

Then g is neutral and self-dual; however the «-surface foliation defined from the integrable distribution V = (9,2, 9,3)
is not basic. Actually, if we take a null tetrad in the form of (25), then we have

$ob(e1) = ¢1b(eg) =2 # 0, (29)

so (27) does not hold. Note that the above metric has in fact constant curvature.
6. Global structure: Main theorem and the mini-twistor version

In this section and Section 7, we treat the global structure. From now on, we write simply “pB-surface” for the
maximal B-surface. The following properties are proved by LeBrun and Mason in [8].

Proposition 22. Let (M, [g]) be a space—time oriented self-dual Zollfrei conformal structure; then

(1) any two B-surfaces intersect at exactly two points,
(2) every B-surface is a totally geodesic embedded S?,
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(3) for every B-surface B, the restriction of the Levi-Civita connection of g to B defines a Zoll projective structure
which depends only on the conformal class [g]; moreover this is isomorphic to the standard Zoll projective
structure on S°.

Suppose there is a closed «-surface on M; then it satisfies the following lemma.

Lemma 23. Let (M, [g]) be a space—time oriented self-dual Zollfrei conformal structure, and let o be a closed -
surface on M, then

(1) « is a totally geodesic embedded S?,

(2) the restriction of the Levi-Civita connection of g to o defines a Zoll projective structure which depends only on
the conformal class [g],

(3) for every B-surface B, the intersection of « and B is either empty or S' which is a geodesic on both o and B for
the induced projective structure.

Proof. In the same way as for Proposition 22, we can check that « is totally geodesic and that [g] induces a projective

structure on «. Then (1) and (2) follow from the Zollfrei condition. Let 8 be a B-surface; then o N B is totally geodesic

in M. This is either empty or a one-dimensional manifold, since any «-plane and any B-plane intersect in a one-

dimensional subspace at a point. So this is a closed geodesic on M. Since o and B are totally geodesic, (3) holds.
]

We now study self-dual Zollfrei conformal structures with «-surface foliation.

Definition 24. Let (M, [g], S0, F) be the quartet of the space—time oriented self-dual Zollfrei conformal structure
(M, [g]), a B-surface S, and a family JF of closed a-surfaces which satisfies the following properties: (i) every o-
surface @ € F has non-empty intersection with S, (ii) F defines a smooth foliation on M \ So. Two such quartets
are said to be equivalent if and only if there is a conformal isomorphism between them which preserves S, and F.
We define M to be the set of equivalence classes of such quartets.

Definition 25. We define M to be the set of conformal equivalence classes of space-time oriented self-dual Zollfrei
conformal structures (M, [g]). Then we have a natural forgetting map M — M.

If there are no confusions, we abuse the notation of a quartet (M, [g], Seo, F) for its equivalence class, and similarly
for a pair (M, [g]).

Lemma 26. Let (M, [g], Seo, F) be an element of M, and let B be a B-surface different from Seo; then 8N So is the
set of antipodal points of B with respect to the induced standard Zoll projective structure on B. Moreover, for a € F,
o N B contains B N S if a N B is not empty.

Proof. If we take a point in S \ S, then there is a unique «; € F which contains this point. If we take the other point
on B\ (Seo Uy), then there is a unique oy € F again which contains this point. Then a1 N B and oy N B are different
geodesics on B, so @] Nay N B equals the set of antipodal points of B. These points belong to both 1 and &2, so they
must belong to Se.. On the other hand, 8 N S is just two points, so B N Seo = 1 N2 N B. Hence B N S is the set
of antipodal points of 8. The latter statement is now obvious. [

Lemma 27. For (M, [g], Seo, F) € M, each a-surface in F one-to-one corresponds with a closed geodesic of Seo.

Proof. Each «o-surface o € F determines a closed geodesic o N S on Soo. We prove that this correspondence is
bijective. The injectivity follows at once since the a-surface is totally geodesic. So we check the surjectivity. It is
enough to show that, for each x € Sy and each one-dimensional subspace | C Ty S, there is an «-surface o € F
such that Tya N T, Soo = [. There is a unique «-plane H C Ty M which contains /, and we can take a one-dimensional
subspace I’ C H different from /. Let ¢ be a closed null geodesic of M which is tangent to I” at x. We can take
y € ¢\ Seo since !’ is not tangent to Ss. Then there is a unique a-surface ¢ € F containing y, and there is a unique
B-surface B with ¢ C B. Since y € o N B, @ N B is non-empty and is a closed geodesic on B. Since o N B contains
B N Ss and y by Lemma 26, this is equal to c. Then we have x € o and Ty = H, so we have Ty N Ty Soo = [ as
required. [
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Let G (Soo) be the set of oriented closed geodesics on Seo. G (Soo) has natural smooth structure since the induced
projective structure on Sy is standard. G(Sx) is diffeomorphic to § 2, and has natural Zoll projective structure induced
from S so that a geodesic on G(Sx) corresponds to the set of oriented geodesics on Sy, containing one fixed point.

Proposition 28. Let (M, [g], Seo, F) be an element of M; then there is a natural identification between Q (Seo) and
the leaf space B of the foliation on M \ S defined by F.

Proof. For every o € F, « is diffeomorphic to $2, and Spc N = S', s0 (M \ Soo) N « is disjoint union of a pair
of disks. Hence M \ S is foliated by such disks. Each o« € F has natural orientation defined from the space—time
orientation on M, so each disk of the foliation is oriented. Then the natural orientation is induced on the boundary of
each disk. In this way, the leaf space B naturally corresponds to G(Sx0). O

Proposition 29. For (M, [g], Seo, F) € M, the a-surface foliation on M \ S induced from F is basic, and the
projective structure induced on the leaf space B is isomorphic to the standard Zoll projective structure.

Proof. We already know that B = G(S) has the standard Zoll projective structure induced from Ss,. We now check
that this projective structure equals the one induced from the «-surface foliation. Then this «-surface foliation is
automatically basic from Proposition 20.

Let B be any B-surface different from S,o. It is enough to check that the set of all the leaves intersecting with 8
corresponds to some closed geodesic on B with respect to the above Zoll projective structure. From Lemma 26, an
a-surface o € F intersects § if and only if & N Sy contains the antipodal points 8 N Ss. Hence the set of «-surfaces
in F intersecting 8 corresponds to the set of closed geodesics on S, containing 8 N S under the correspondence of
Lemma 27. Such a set is a closed geodesic on Q(Soo). O

Let RP" c CP" be the standard real submanifold.

Definition 30. Let (¢, o) be the pair of a totally real embedding ¢ : RP3 — CP3 and a point {y € P = ((RP?) which

satisfy:

e 7(P \ {¢o}) = RP? for the projection = : CP? \ {¢o} — CP?, where CP? is the space of complex lines in CP3
through o, and this equation means that the image 7 (P \ {¢o}) is mapped to the standard RPP? by some holomorphic

automorphism on CP2,
o let (C]P’é =77 1&) N {¢} and P: = <CIP>§ N P for each & € (P \ {¢o}); then (CP}, Pg) is biholomorphic to

(CP', RP'), i.e. there is a biholomorphic map (C]P’é — CP! which maps P: to RP!.

Two such pairs (¢, {o) and (¢, £;) are said to be equivalent if and only if there is a holomorphic automorphism ¢
on CP3 which satisfies ¢’ = ¢ o ¢ and {6 = ¢(&o). We define 7 to be the set of equivalence classes of such pairs.

Definition 31. We define 7 to be the set of equivalence classes of totally real embeddings ¢ : RP3 — CP3. Then we
have a natural forgetting map 7 — 7.

We abuse the notation (¢, {p) or ¢ for their equivalence classes. Our main theorem is the following. We define
Im M — Mand fr: 7T — T as the forgetting maps.

Theorem 32. Let U C M and V. C T be subsets containing the standard elements on which the one-to-one
correspondence in the sense of Theorem 9 holds. Then there is a one-to-one correspondence between f/d (U) and

f{—l (V) which satisfies the following properties: if (M, [g], Seo, F) corresponds to (1, §y), then

(1) (M, [g]) corresponds to i in the sense of Theorem 9, i.e. this correspondence covers the correspondence between
UandV,

(2) the standard double fibration B < W, — CP? is induced by using the maps w : M \ Ssoc — B and
7 : CP3\ {¢o} — CP?, where w is the a-surface foliation defined from F and 7 is the projection from Co.

Before we start to prove Theorem 32, we argue about a mini-twistor version in the rest of this section. The situation
is described in the diagram (30).
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Definition 33. Let (S2, [V], C) be the triple of an oriented Zoll projective structure (SZ, [V]) and a closed geodesic
C on S? which satisfies: (i) there is a smooth involution o on C, and (ii) for every x € C and every closed geodesic
c through x, ¢ passes through o (x). We call o (x) the antipodal point of x and write x for o (x). Two such triples are
said to be equivalent if and only if there is an automorphism on S2 which preserves [V], C, and the involution. We
define M to be the set of equivalence classes of such triples.

Definition 34. We define Mo to be the set of equivalence classes of oriented Zoll projective structures (S2, [V]).
Then we have a forgetting map My — M.

Definition 35. Let (¢, o) be the pair of a totally real embedding ¢ : RP?> — CP? and a point £y € N = ((RP?) which
satisfy:

e 7(N \ {¢o}) = RP! where 7 : CP? \ {¢o} — CP! is the projection,
o let CP} = ~'(§) U {¢o} and Nz = CP} N N; then (CPP}, P) is biholomorphic to (CP', RP").

We define 7 to be the set of equivalence classes of such pairs, where the equivalence is defined in the same manner
as in Definition 30.

Definition 36. We define 7 to be the set of equivalence classes of the totally real embeddings ¢ : RP? — CP?. Then
we have a forgetting map 7o — 7p.

We abuse the notation (Sz, [V], C) for its equivalence class and so on, and we define faq, : Mo — M and
f1, : To — 7o as the forgetting maps.

Theorem 37. Let Uy C Mo and Vy C ’Z_[) be subsets containing the standard elements on which the one-to-one
correspondence in the sense of Theorem 3 holds. Then there is a one-to-one correspondence between f/;/tlo(UO) and

f{?) ! (Vo) which covers the correspondence between Uy and V.

Proof. We start from an element (S2,[V],C) € Mo. If (S2,[V]) € Uy, then we have a double fibration

$2 L W, W) —25 (CP?, N) from Theorem 3, where N is the image of the totally real embedding ¢ : RP? —
CP2. We define Zo € N to be the point corresponding to C, i.e. £y is the point such that C = p; oqfl(g“o). Letx € C be
any point, and ¥ be its antipodal point, and D, D; be the holomorphic disks on (CP?, N),i.e. D, = gj o pl_l (x) and
so on. Notice that {y € D, and {y € Ds. Since each point on D, C N corresponds to some closed geodesic on s2
containing x, and since such geodesics also contain x from the definition, we have d D, = d Dxz. Hence [, = D, U Dx
defines a rational curve on CP?, and this is proved to be a complex line. Actually, let y € C be a point different from
x and x, and /,, be a rational curve defined in the same way as above. Then I, N[, = {{o}; moreover d D, and 9D,
intersect transversely in N, so [, and /, intersect only on ¢y transversely. Hence /, must be a complex line.

Let 7 : CP?\ {¢o} — CP! be a natural projection. From the above argument, we see that 7 maps [, \ {{o} to
a point. N \ {¢o} is foliated by lines in the form of d Dy \ {¢o}, and such a line one-to-one corresponds to a pair of
antipodal points {x, x} in C. Since 7 (N \ {¢o}) is the quotient space of such a line foliation, it is diffeomorphic to
C /7, ~ RP!. Since N is a totally real embedded RIP?, it follows that 7 (N \ {¢o}) is also a totally real submanifold in
CP!. Hence (CP!, 7(N \ {¢o})) is biholomorphic to (CP', RP!), and (¢, o) defines an element of 7.

Next we start from (¢, {g) € 7. If t € Vj, then we have a double fibration S2 <‘”—1(W+, Wr) i>((CIP’2, N). We
define C = p; o ql_l (¢0), and we prove that there is a natural involution o on C.

((C]P’é, N¢) consists of two holomorphic disks Dj and D; with dD; = dD, = Ng for every & € RP!. Since D,

and D; define generators of H; ((CIPZ, N), they correspond to some points x| and x, in Sy, respectively. Then x; € C
from ¢y € D1, and similarly x, € C. Now all the holomorphic disks containing ¢y are written in the above form, so
C equals to the union of such pairs of points. We define o to be the involution on C interchanging two such points.

It is enough to show that every closed geodesic in S through x € C always passes through ¥ = o (x). This is,
however, obvious because each closed geodesic through x € C corresponds to some point on d D, = d D;z under the
double fibration, so this geodesic also passes through x. [
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Now we explain the following diagram as regards Theorem 37.
Wi
/ \
U
s? Wi CP?
U n U

(30)

s2\¢C DiuD- <CIP’2 go}.
{b+} «:Pl

Let D be one of the two holomorphic disks of (CP!, RP!) and let D_ be the other one. Let go : Dy LI D_ — CP!
be the natural map. Let {b+} be a set consisting of two points, and define a map po by po(D+) = br. We define
W, = pl_l(S2 \ €), and let p) and g be the restrictions of p; and g;. Then /T and @ are naturally induced from
7 so that the diagram commutes. Notice that o maps each connected component of S2 \ C to one point. We define
S3 =w (by).

From the proof of Theorem 37, each point & € RP! corresponds to a pair of antipodal points {x, X} of C via
CIP’% = D, U D;. Hence there is a natural isomorphism i : C/Z; = RP!. On the other hand, there is a natural map
W : Wy — C/Z, defined in the following way. Each point of Wy, corresponds to a pair (x, /) of a point x € § 2\ C
and a closed geodesic [ on 5?2 containing x. Then we define w(x,l) € C/Z; to be the intersection / N C. We have
i o o = qo o IIg by definition, where Il is the restriction of /I to Wp.

In this way, we have checked that I : W/ — D, U D_ satisfies the following conditions:

(IT1) IT is smooth and @ o p| = pg o I,
(T12) there is an isomorphism i : C/Z; — RP! satisfying i o u = g o IIg,
(T13) I is holomorphic on W'\ W,

The next lemma says that such a map I7 satisfying the above conditions is determined uniquely up to isomorphism.
Lemma 38. Let II be the map given above, and let II' : W' — D, UD_ be a map which satisfies (I11) to (T13). Then

there is a holomorphic automorphism T on CP' fixing D and satisfying IT' = T o II, where T is the automorphism
of Dy U D_ induced from T.

Proof. Let i’ : C/Z, — RP? be the map satisfying the condition (I12) for II’,i.e. i’ o u = gg o I Let x € 52 be
any point; then we have
iopy =qoollpy, i/op,xzqooﬂ[f&x,

where IIg ., Il . and ji, are restrictions of ITg, [T and won Wy y = pfl (x). Since uy is bijective, we have

(qoo Iy ) o (qoo Mg ) ' =i'0i™". 31)

The left hand side of (31) extends holomorphically to the interior of D, so i’ o i~! extends to a holomorphic
automorphism on D, . In the same way, if we take x € S_, we can check that i’ oi ~! extends to D_ holomorphically;
hence there is a holomorphic automorphism 7' on CP! fixing D and satisfying I = T o II,. Since T does not
depend on x € S\ C, this is the required automorphism.  [J

Corollary 39. Suppose that a given map II satisfies (I11) to (TI13); then there is a unique continuous map 7w which
makes the diagram (30) commute. Such a map 7 is equivalent to the natural projection from &y.

Proof. The map II satisfying the conditions (IT1) to (I13) is essentially unique, and this is the one defined
from Theorem 37. So it follows that the natural projection 7 is the unique map which makes the diagram (30)
commute. [J
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7. Proof of the main theorem
First we prove the following proposition.

Proposition 40. Let (M, [g], Seo, F) € M be an element which is contained in f/:/ll(U ) in the terminology of
Theorem 32. Then there is a unique element of T which satisfies the conditions in Theorem 32.

Let (M, [g], Soo, F) € f/\_/ll(U ) be an element; then we have a totally real embedding ¢ : RP3 — CP3

corresponding to (M, [g]) in the sense of Theorem 9. Let P = ((RP3); then each point on P corresponds to some
B-surface, so we can define {y € P as the point corresponding to Sxo.

Letw : (M \ Soo) — B be the basic a-surface foliation induced from F. We have the standard Zoll projective
structure on B by Proposition 28. Then we have the following diagram:

(Z+, ZR) (32)

M (Z’, H@) (CP%, P)
M\ Soo Wy, Wr) (92(Z), qu(ZﬁQ)) < (CP\ (%o}, P\ {%o)

B ((CHD2 RP?)

where Z is the disk bundle over M defined in the manner of Section 3 Zl = p,y ! (M \ Sso) is its restriction and

W, is the disk bundle over B defined in the manner of Section 2. Let B & W+ 2 CP? be the double fibration for the
standard Zoll projective structure on B.

Let Ly be the distribution on YWg as in Section 2, and let ER be the twistor distribution on Zg as in Section 3. Then
the natural map 17 : Z, — W, is induced by the proof of Proposition 20, and I7 is holomorphic on Z' \ Z,. We also
have II,(Er) = L for the restriction /I of II on Zp. Since g; and g are the maps which collapse the foliations
defined by Ly and ER, II induces a continuous map 7 : g2(2") — CP2. We want to prove that 7’ smoothly extends
to the natural projection 7 : CP3\ {{o} — CP?, and that (CPP}, P) is biholomorphic to (CP!, RP!) for each & € RP?,
where Cpg =n"'(¢) U {¢) and P; = (C]P’é N P.

We study 7’ in more detail. Let « be an -surface in F, and let Cy = o N Seo. If we put o\ Cy = a4 U, then oy
and o_ are two leaves of the a-surface foliation @ : M \ Soo — B. If we put b1 = @ (o), then {b, b_} is the set
of antipodal points on B by Proposition 29 and so on. So the corresponding holomorphic disks D,, = g; o p]_1 (b+)
have a common boundary, and (C}P’é = Dy, U Dy_ is a complex line in CPP?. Then we obtain the following diagram
as the restriction of (32):

Zila (33)

A
4

a\ Cy L UDp_ q2(Z Ia\ca) c Qa \ {¢o}
{b+}

where Z4]q = p; ' (@), Zlac, = p5 @\ Ca), Q¢ = g2 0 p; ' (@), and s0 on.
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Since C, is a closed geodesic on Sy, with respect to the standard Zoll projective structure, C, has a natural
involution which is the restriction of the involution on S, exchanging the antipodal points. Hence (o, [V], Cy) defines
an element of M’, where [V] is the Zoll projective structure on « defined by Lemma 23.

Lemma41. () Z% o = (Z4le) \ (ZRla) is a complex submanifold of Z; = Z, \ Zg.(ii) The double fibration
o < Zi|e = Qg equals the double fibration for the Zoll projective structure on o given by Theorem 3. Consequently,
Qy is biholomorphic to CP2.

Proof. Let W* = P(Ta ® C), and we define W as in Section 2, where W* = WS¢ U W2, First we construct
a diffeomorphism p : W¥ = Z4lo. Let x € o be any point, and take a null tetrad {eg, e1, ¢o, ¢1} on an open
neighborhood U C M of x so that Ta = (¢, ¢1). We can define diffeomorphisms WY |yny < CP! x U n
o) S5z |une by using the trivializations of WW* given by (1) and of Z given by (12). In other words, this map is

characterized as the correspondence between a complex tangent line / of « and a complex S-plane § so that/ C g,
ie.

(o + ¢ P1) <> (eo + Cer, o+ 1) .

This diffeomorphism does not depend on the choice of the null tetrad; hence we obtain a global diffeomorphism
wes z |- We define p to be the restriction of this diffeomorphism on W¥.

We now check that Z9 |, is a complex submanifold of Z9 . The complex structure on Z9 is defined so that the (0,1)-
vector space is K = (mj, my, 8_;), where mj and m; are the horizontal lifts of eg + ey and ¢ + ¢ ¢ respectively.
On the other hand, the complex structure on W ° is defined so that the (0,1)-vector space is K = (n, 8_;), where n is
the horizontal lift of ¢9 + ¢ ¢1. Then we obtain p,(n) = m; and p.(3;) = 9;; hence p is holomorphic on the interior
of WY.

By a similar argument, we can check (or)«(Lr) = Er N Ta for the restriction of p on Wg. This means that
q : Z4ly — Qg is the map which appears in the double fibration for the Zoll projective structure in the sense of
Theorem 3. [

Lemma 42. CP? ~ Q, C CP3 is a complex submanifold.

Proof. Let Oy r = g2(ZRle). By Lemma 41, Qg \ Qur C CP3\ Pisa complex submanifold. So it is enough to
check that, for each point { € Q, R, there is an open neighborhood in Q, which is a complex submanifold of CP3.
Notice that Oy g C P is a smooth real submanifold. This follows from the facts that g5 : Zrla — Qg.R is an

S'-bundle, that @R Zr — Pisan S2-bundle, and that each fiber of g5 g is contained in some fiber of g, g as a
smooth real submanifold.
We want to show that

T: Qo =T; Qo r ® J(T; Qo R) (34)

for each ¢ € Q4 R, where J is the complex structure on CP3. Originally J is defined in the following manner (cf. [8],
proof of Theorem 7.3). We can take a non-vanishing vector field u on Zr which spans ker(p, r)+ at every point.
Moreover we can assume that j(u) directs the interior of Z where j is the fiberwise complex structure of Z with
respect to the CP!-bundle p,. Then J is defined as the linear transform satisfying J(g2+(u)) = g2+(j(u)). Now
Eq. (34) follows directly from this definition. [

Lemma 43. [I, satisfies the conditions (I11) to (I13).

Proof. It is obvious that I, satisfies (I11) and (I13), so we check (I12). Let S/Z> be the set of pairs of antipodal
points on S, and we define a bijection [ : Suo/ Z~2 — RP? by the following. For each [x] € S /Z>, the set of closed
geodesics through x defines a geodesic on B = G(Ss). Then we define I ([x]) € RP? to be the point corresponding

to this geodesic in the double fibration B £-(W.,, Wg) 3 (CP?2, RP?).

Since Cy = @ N Soo, we can define iy : Cy/Zy — R]P’gl as the restriction of /. Then we have iy ([x]) € R]P’gl from
the definition, and we have iy o © = g1 o II, r. Actually, for example on o, each point z € Zg|y, corresponds
to a pair (x,c) of a point x € a4 and a closed geodesic ¢ on « through x. Then we have ©u(z) = [c N Seo] by
definition. Hence iy o w(z) = I([c N Soo]). On the other hand, let B, be the unique B-surface containing c; then
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II, R (z) = IIr(z) € Wk is the point defined by (b, @ (B.)), where b, = @w(x) and w (B.) is a closed geodesic on
B. Hence we have g101l, g(z) = I ([:NSx]) from the meaning of the double fibration for B. Since cNSoo = BcNSeo,
weobtainig ot = g1 o0l g. O

Corollary 44. 5, continuously and uniquely extends to 7y : Qo \ {C0} — CP!, and m, is equivalent to the natural
projection from {o.

Proof. Directly follows from Corollary 39. 0

Lemma 45. There is a unique continuous extension w : CP3 \ {¢g} — CP? of 7’ : @ (Z2)) — CP2.

Proof. Since g2(Z") is dense in CP3\ {¢o}, the continuous extension is unique if it exists. So we prove the existence.
For an element { ¢ g2(Z!), we define w(¢) as follows. There is a unique x € S such that ¢ € Dy, where
Dy =qro0 pz_l(x). Let @ € F be an «-surface through x; then { € Q, and we put 7(¢) = 7 (¢). Then 7 (¢) does
not depend on the choice of «, since 7, (¢) = iy ([x]) = I(x) from the proof of Lemma 43.

Now we check that the above 7 is continuous. First, notice that Uy, Q, = CP3. Actually, for any ¢ € CP3, we
can take x € M sothatx € pr o q{l (¢), and if we take any o € F through x, then we obtain { € Q. Since 7 is
continuous on each Qy, 7 is continuous on CP3 \ {¢p}). O

Lemma 46. For each & € CP?, lg = 7N (E) U (o) is a complex line in CP3. In consequence, w : CP3\ {¢o} — CP?
is the projection.

Proof. For each £ € CP?2, there is at least one o« € F such that £ € (CIP’&. Since 7~ 1(&) = T, 1 (&) from the definition
of m, Iz = na’l (€) U {¢o} is a complex line in Q, ~ CP? by Corollary 44. Moreover l¢ is a rational curve in CP3 by
Lemma 42.
Let £ € CP) be a point different from &; then lgr is a rational curve in CP3. l¢ and [z are the complex lines in
o =~ CP? which intersect only at &p. Since Q, C CP3 is an embedding, /¢ and /¢ intersect only at o in CP3, and
the intersection is a node. Hence /¢ and /¢ are complex lines in CP3. [

Proof (Proof of 40). For given (M, [g], Seo, F), we already have a totally real embedding ¢ : RP> — CP? and
Zo € P = ((RPP?) which satisfies 7 (P \ {¢o}) = RP? for the standard projection 7 : CP3 \ {¢o} — CP?. For each
S RP?, we put{x,x}=1 -1 (&) which is the set of antipodal points of S. Let D, and D3 be the holomorphic disks
corresponding to x and x; then we have [z = CIP’% = D, U Dx. Since Pt = dD, = dDs, (CP}, P¢) is biholomorphic
to (CP!, RP'). Hence (¢, &) is an element of 7 and this satisfies the required conditions in Theorem 32.  [J

Next we prove the opposite direction of the main theorem.

Proposition 47. Let (1, {o) € T be an element which is contained in fT_l (V) in the terminology of Theorem 32. Then
there is a unique element of M which satisfies the conditions in Theorem 32.

Let (1, &) € fT_l(V), P = ((RP3), and 7 : (CP?\ {¢o}, P \ {¢0}) — (CP?, RP?) be the projection.

By Theorem 9, we have a space—time oriented self-dual Zollfrei conformal structure (M, [g]) and a double fibration
M2 Z4 B CP? so that q2,R(ZR) = P. Each point x € M corresponds to the holomorphic disk Dy = g2 o p; ! (x)
in (CPP3, P), and each point ¢ € P corresponds to the B-surface ps o q ! (¢) on M. We define Sy, to be the §-surface
corresponding to the point ¢y € P. Notice that, for each x € M \ S, we obtain {y & Dy, i.e. Dy is a holomorphic
disk in (CP* \ {0}, P\ {¢o})-

Let B <p—l(W+, WR) g(C]P’z, RP?) be the double fibration given by Theorem 3. Each point in B corresponds to
some holomorphic disk in (CP?, RP?), and B is equipped with the standard Zoll projective structure.

Let B/Z; be the set of pairs of antipodal points in B. Let b € B/Z; be a pair of antipodal points {b, b_}; then the
corresponding holomorphic disks Dj, have a common boundary, so (CIP’II7 = Dp, U Dy_ is a complex line in CP2. If
we put Qp = 7[‘1((C]P’})) U {%o}, then Qp is a complex plane in CPP3, since 7 is the projection. We put N, = P N Qp.

Lemma 48. (O, Np) and &g define an element of Ty.
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Proof. N} is the one-point compactification of 7, ! (RIP’,])), where RP! = RP2N (CIE”}7 and R : P\ {Zo} — RP? is the

restriction of . Since 7R is a non-trivial R-fibration, Nj is an embedded RP? in Qyp. Since ¢y € Np, and since the
second condition in Definition 35 obviously holds, (Nj, ¢o) defines an element of 7p. [

From Lemma 48, we obtain a diagram similar to (30):

Wy (D) (35)

y m
U

a(b) WL (b) Qp

a(b)\ Cp Dy, U Dy_ Ob \ {¢0}-

N,

{b+} CP}

Lemma 49. There is a natural injection a(b) — M. Moreover there is a smooth map @w : M \ Sooc — B such that
the restriction of @ on a(b) is equal to wp.

Proof. Let p € a(b) be a point and D), = q1(b) o pl(b)’1 (p) be the corresponding holomorphic disk in (Qp, Np).
Let £y = {Dp}pea(p) be the family of such holomorphic disks in (Qp, Np); then L, foliates Qp \ Nj. We will soon
show that Uj, £;, defines a family of holomorphic disks in (CP?, P) foliating CP3 \ P; then it follows that a(b) is a
subset of the moduli space M of holomorphic disks. Moreover, @ is naturally induced as the map between the sets of
holomorphic disks, so this is smooth and @ |y () = @}

Now we prove that Uy, £, foliates CP3 \ P. For distinct points b, b’ € B/Zj, (C]P’}) N (C]P’l]J, consists of one point
g € RP2. Then Q, N Q) = 7~ 1(§) U {¢0} = CP}. If we put P; = (CIP% N P, then (CP}, P¢) is biholomorphic to
(CP!, RPY) by definition. So we can write (CIP’; = D1 U D;, where dD| = 0Dy = Pg¢. As in the proof of Theorem 37,

the D; (i = 1, 2) are contained in £, and £;. Hence £, U Ly, foliates (Qp U Q) \ (N U Nyy). Since Uy, Qp = CP3,
it follows that Uy, £, foliates CP3\ P. O

It follows from Lemma 49 that the diagram (35) is the restriction of the diagram (32), i.e. W (b) = g, 1(Q;,) =
p{l(a(b)), p1(b) = p2lw, ) = q2Iw, ) and so on. Now we put F = {a(b)}pep/z, Which is a family of embedded
2-spheres in M. Each «(b) has a Zoll projective structure defined by Theorem 37 and Lemma 48.

Lemma 50. «(b) is a closed a-surface.
Proof. Each closed geodesic on «(b) is written in the form

C©)=pib)oqib) ()

for some { € Nj, while each B-surface is written in the form B(¢) = p2 o g, ! (¢) for some ¢ € P. Hence each
closed geodesic on «(b) is contained in some B-surface. So «(b) is totally null. Since a totally null surface is either
an «-surface or a B-surface, and since «(b) is not a S-surface, this is an «-surface. [

Proof (Proof of 47). For given (¢, §p), we take (M, [g], S0, F) as above. For each a(b) € F, a(b) N Soo = Cp 18
always non-empty. F defines a smooth foliation on M \ Sy; hence (M, [g], Sco, F) is an element of M. This element
satisfies the conditions in Theorem 32. [

Theorem 32 follows from Propositions 40 and 47.



F. Nakata / Journal of Geometry and Physics 57 (2007) 2077-2097 2095
Acknowledgements

The author most gratefully thanks his supervisor Mikio Furuta, for much advice and continuous help. This research
is supported by the 21st century COE program at the Graduate School of Mathematical Sciences, the University of
Tokyo.

Appendix A. Self-dual foliation

In Section 5, we argued on a basic «-surface foliation, while Calderbank considered a self-dual «-surface foliation
in [2]. Here we check that these conditions are equivalent in the assumption of the self-duality condition of the metric.

Let (M, g) be a 4-manifold with a neutral metric and let S~ be the negative spin bundle; then an «-plane distribution
on M one-to-one corresponds with a subbundle / : L — S~.

If we fix ! : L — S and take a connection V on L, then we have the covariant derivative operator
DY : I'(S"®L*) — I'(TM ® S~ ® L*). Noticing the identification T*M = St* @ §7* = ST ® S, we
put T*M © S~ = ST ® (S~ ® §7), where S~ ©® S~ is the symmetric tensor. We obtain the twistor operator
TV:I'(S"®L*) — I'(TM ® S~ ® L*) by composing the symmetrization with the covariant derivative DV

Definition 51 (Cf. [2]). A connection V on L is called canonical if and only if it satisfies 7VI = 0. An a-surface
foliation @ is called self-dual if and only if, for the corresponding subbundle / : L — S—, (i) there is a canonical
connection V on L, and (ii) V is self-dual.

The following property is explained in [2]; however we give the proof again by using an explicit description.

Proposition 52. Let [ : L — S_ be a subbundle; then the «-surface distribution corresponding to | is integrable if
and only if the canonical connection on L exists. The canonical connection is unique if it exists.

Proof. Since the conditions are entirely local, we can assume that S~ = M x R? and L = M x R are trivial bundles,

and that/ : L — S~ is a constant section / = (?) € I'(S™ ® L*). Let (Z‘l’ z?) be a null tetrad respecting the

trivialization of S™; then the a-plane distribution corresponding to / is given by (¢o, ¢1).
We denote the Levi-Civita connection of g in the same way as in (10). Let V be a connection on L represented by
a connection 1-form 7; then the equation 7V = 0 is decomposed into the following equations:

<a+d +r) (ea) =0,

2
d =
e(eA)+<%+r) @) =0, A=0D. (36)
e(pa) =0,

So the canonical connection on L exists if and only if e(¢9) = e(¢1) = 0. This holds if and only if the «-plane
distribution (¢, ¢1) is integrable as in (18). The uniqueness of the canonical connection is obvious from (36). [

Lemma 53. Let (M, g) be a 4-manifold with a neutral metric g and w : M — B be an a-surface foliation. Then
is self-dual if and only if the following equations hold:

¢o(a + d)(ep) = ¢1(a +d)(e1) =0,
doa(er) + ¢ra(eo) = —(god(er) + P1d(ep)).

Proof. Take a null tetrad as in Proposition 10. Since this null tetrad fits with the proof of Proposition 52, the canonical
connection is defined by the 1-form t satisfying (36). This connection is self-dual if and only if

dt(eg N ¢o) =dt(er Ap1) =dt(eo A ¢1 +e1 Ago) =0,

(37

and it is equivalent to (37), since ¢ = 0 by Lemma 13. [

Proposition 54. Let (M, g) be a 4-manifold with a neutral self-dual metric and w : M — B be an a-surface
foliation. Then @ is self-dual if and only if it is basic.



2096 F. Nakata / Journal of Geometry and Physics 57 (2007) 2077-2097

Proof. We take the coordinate as in Proposition 15, and define g as the form (23). If we take a null tetrad as in (25),
then each element of the connection form is given by (37). Noticing (24), @ is self-dual if and only if

0d3p = rdsqg = 03p = d3q = d3r = 831 = 0. (38)

This is equivalent to the basic condition (27). [
Appendix B. Null conformal Killing vector field

Here we treat the case of Dunajski and West, i.e. the case when there is a null conformal Killing vector field on
(M, g). Our method is a little far from the general treatment of twistor theory (cf. [13]), but the calculations are easier.

Definition 55. Let (M, g) be a 4-manifold with a neutral metric; then a vector field K on M is called the conformal
Killing vector field when there is a function n on M satisfying Lk (g) = ng.

Notice that this condition depends only on the conformal structure on M.

Proposition 56 ([4]). Let K be a null conformal Killing vector field on (M, [g]); then there is a unique «-plane
distribution and a unique B-plane distribution on M which contains K, and these distributions are both integrable.

For the proof of this, see [4] Lemma 1, and the remark following it.

Let (M, g) be as above and K be a null conformal Killing vector field on M. From Proposition 56, M has an
a-surface foliation. Taking M smaller, we can assume that the leaf space B of this «-surface foliation is a two-
dimensional manifold. Then we can take the coordinates and the null tetrad as in Proposition 10. Now, since K is a
section of the a-surface distribution, we can write

K =K'+ K'¢) (39)

with some functions K® and K'. We use the same description for the Levi-Civita connection as in (10), and, for
simplicity, we write a(e;) = a; and so on.

Lemma 57. A null vector field K = K%po + K¢/ is a conformal Killing vector field if and only if there is a function
n on M and the following conditions hold:

pok' =p1K°=0

pok’ =K' =1

eoKl—l—boKO—a()Kl =0 (40)
elKO—d1K0+b1K1 =0

oK —doK + bok' = 1K' + b1 K —a K.

Proof. Direct calculation from Lxg =ng. 0O

Lemma 58. Let (M, [g]) be a neutral self-dual conformal structure, and K be a null conformal Killing vector field
on M; then

¢oar + ¢rap = ¢ody + $1dp = 0, doao = ¢1d; =0, $ob1 = ¢1bo = 0. 41)
Proof. Differentiating (40), and using (17), we have

eon = —(¢160)K” + (1a0)K ",

e1n = (¢od1)K® — (¢ob1)K ",

eon = ($o(do + b))K" — (goanK ',

et = —(¢1do) K" + ($1 (a1 + bo))K .
Comparing these equations, and from (22), we obtain the first and the second equation of (41). Operating with ¢y on

the first of (42), and with ¢ on the second, we have (¢1bg)n = (¢ob1)n = 0. We can assume 7 # 0 by changing the
metric in the conformal class [g], so we have ¢ob1 = ¢p1bp =0. O

(42)
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Theorem 59. The o-plane distribution defined by Proposition 56 is basic.

Proof. Condition (27) is obtained directly from (41). Hence this distribution is basic. O
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