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Abstract

A global twistor correspondence is established for neutral self-dual conformal structures with α-surface foliation when the
structure is close to the standard structure on S2

× S2. We need to introduce some singularity for the α-surface foliation such that
the leaves intersect on a fixed 2-sphere. In this correspondence, we prove that a natural double fibration is induced on some quotient
spaces which is equal to the standard double fibration for the standard Zoll projective structure. We also give local general forms
of neutral self-dual metrics with α-surface foliation.
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1. Introduction

LeBrun and Mason investigated two kinds of twistor-type correspondences in [7,8]. One of them is the
correspondence for the Zoll projective structure on two-dimensional manifolds [7]. A projective structure is an
equivalence class of torsion-free connections under the projective equivalence, where two torsion-free connections are
called projectively equivalent if they have exactly the same unparameterized geodesics. A projective structure is called
Zoll when all the maximal geodesics are closed. LeBrun and Mason proved that there is a one-to-one correspondence
between

• equivalence classes of orientable Zoll projective structures (B, [∇]), and
• equivalence classes of totally real embeddings ι : RP2

→ CP2,

when they are close to the standard structures. Here B is identified with the moduli space of holomorphic disks on
CP2 whose boundaries are contained in N = ι(RP2).

The second twistor correspondence constructed by LeBrun and Mason is the one for four-dimensional manifolds
equipped with a neutral self-dual Zollfrei conformal structure [8]. An indefinite metric on a four-dimensional manifold
is called neutral when the signature is (++−−), and here we consider the indefinite conformal structures represented
by such metrics. For a neutral metric on a 4-manifold, we can define the self-duality condition like in the Riemannian
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case (cf. [4,5,8]). An indefinite metric is called Zollfrei when all the maximal null geodesics are closed. In the neutral
four-dimensional case, the Zollfrei condition and the self-dual condition depend only on the conformal class [8].
LeBrun and Mason introduced the notion of space–time orientation for a 4-manifold with neutral metric, and proved
that there is a one-to-one correspondence between

• equivalence classes of space–time oriented self-dual Zollfrei conformal structures (M, [g]), and
• equivalence classes of totally real embeddings ι : RP3

→ CP3,

when they are close to the standard structures. Here M is identified with the moduli space of holomorphic disks
on CP3 whose boundaries are contained in P = ι(RP3). They also proved that only S2

× S2 admits a space–time
oriented neutral self-dual Zollfrei conformal structure.

These two twistor correspondences are real, non-analytic and global versions of two of the three twistor
correspondences explained in [6] by Hitchin. The three are twistor correspondences for (1) complex surfaces with
projective structure, (2) complex 4-manifolds with anti-self-dual conformal structure and (3) complex 3-manifolds
with Einstein–Weyl structure. The corresponding twistor space is given by complex manifolds Z with an embedded
CP1 whose normal bundle is O(1),O(1) ⊕ O(1) or O(2) respectively. The geometric structures (1), (2) and (3) are
given as natural structures on the moduli spaces of such an embedded CP1 in Z . Hitchin’s argument is local, and the
description is based on holomorphic category. The twistor space for (1) is sometimes called mini-twistor space (cf.
[2]).

The twistor correspondence for (2) was originally discovered by Penrose [12], and the Riemannian version of
this twistor correspondence is given by Atiyah, Hitchin and Singer [1]. In the Riemannian case, self-dual conformal
structure is automatically analytic since the equation is elliptic. Moreover the family of rational curves on twistor
space forms a globally defined foliation, and, for this reason, it is straightforward to translate the local description to
the global case.

On the other hand, in the cases of LeBrun and Mason, the equations have non-analytic solutions in general, and
the family of CP1 in the twistor space does not form a foliation different from the Riemannian case one. LeBrun
and Mason overcame these difficulties by using two techniques: the first one is using the family of holomorphic disks
instead of that of CP1, and the second one is setting in terms of the Zollfrei condition. Notice that the Zollfrei condition
is an open condition in the space of neutral self-dual metrics (cf. [8]).

Recently, there has been some development concerning the reduction of the neutral self-dual conformal structures
on 4-manifolds (M, [g]) (cf. [2,4,11]). Dunajski and West [4] proved that, if there is a null conformal Killing vector
field on M , then there is a natural null surface foliation containing this Killing field, and that a natural projective
structure is induced on the leaf space. Calderbank generalized this argument and weakened the assumption; the
weakened assumption is given as a property for a null surface foliation on M . Both arguments are local, and formulated
in a smooth category. They also studied the analytic case; then they showed that, under these conditions, a twistor
correspondence of case (2) induces a twistor correspondence of case (1) as a reduction.

It would be natural to expect a theory of reduction for the two global twistor correspondences of LeBrun and
Mason. The local theory of Dunajski, West and Calderbank would suggest that the natural class of such a theory is
neutral self-dual Zollfrei conformal structures with closed null surface foliation. Even the standard conformal structure
(S2
×S2, [g0]), however, is not contained in this class. Actually, on (S2

×S2, [g0]), any two closed α-surfaces intersect
at exactly two points, so it is impossible to find a closed α-surface foliation, where the α-surface is one of the two
kinds of null surfaces. The purpose of this paper is to set a nice class of neutral self-dual Zollfrei conformal structures
equipped with an α-surface foliation with some singularity explained later. Then we prove that there is a one-to-one
correspondence similar to the twistor correspondence of LeBrun and Mason, and that the reduction works globally.

In our situation, the induced projective structure on the leaf space is proved to be the standard Zoll projective
structure. It would be an interesting problem to find some different formulations so that non-standard Zoll projective
structures are induced by the reduction.

The organization of the paper is as follows. In Sections 2 and 3, we review the definitions and properties for
projective structures and neutral self-dual conformal structures respectively. In particular in Section 3, we prepare an
explicit description without using spinor calculus, which enables us to establish the general forms of neutral self-dual
metrics with α-surface foliation in Section 4. In Section 5, we define a notion of basic α-surface foliation which we
need to carry out the reduction. Calderbank defined the notion of self-dual α-surface foliation. In Appendix A, we
show that basic is equivalent to self-dual under the assumption of self-duality for the metric. The basic foliation,
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however, rather fits to our description. By using this notion, we give a simple proof of the above results of Dunajski
and West in Appendix B.

We treat the global situation in Sections 6 and 7. In Section 6, we formulate a class of neutral self-dual conformal
structures with a suitable α-surface family, and we state the main theorem (Theorem 32). There is a low dimensional
or mini-twistor version of the main theorem, and we prove this version in the rest of Section 6. The proof of the main
theorem is presented in Section 7.

In this article, we follow LeBrun and Mason’s conventions of orientations and the terminology of the α-surface and
β-surface. We assume that all the manifolds and metrics are C∞, and that the topology of maps between manifolds is
C∞-topology.

2. Projective structure

Let B be an oriented two-dimensional manifold, and let W = P(T B ⊗ C) and WR = P(T B) be the
projectivizations. Let p : W → B and pR : WR → B be the projections. Then every w ∈ W \WR corresponds to
a complex line Lw ⊂ Tb B ⊗ C, where b = p(w). Since Tb B ⊗ C = Lw ⊕ L̄w, w defines a complex structure on
Tb B. Let W ◦+ be one of the two connected components of W \WR whose element defines an orientation preserving
complex structure, and we putW ◦− as the other component. LetW± be the closures ofW ◦±; then we have

W =W◦+ ∪W◦− ∪WR =W+ ∪W−.

Let V ⊂ B be a coordinate neighborhood with an oriented coordinate (y0, y1). By putting ∂i =
∂
∂yi , we can

trivializeW = P(TCB) on V via

CP1
× V

∼
−→W|V : ([ζ0 : ζ1], b) 7−→ [ζ0∂0 + ζ1∂1]b. (1)

Notice thatW+|V ' {(ζ, b) ∈ CP1
× V : Im ζ ≥ 0 or ζ = ∞}, where ζ = ζ1/ζ0 is the fiber coordinate.

Let ∇ be a torsion-free connection on B; then the connection form respecting the coordinate (y0, y1) is given by
the gl(2,R)-valued 1-form ω:

ω = (ωi
j ), ∇∂ j = ω

i
j∂i .

The horizontal lift of a tangent vector e ∈ Tb B at ζ i∂i ∈ Tb B is

ẽ = e − ωi
jζ

j ∂

∂ζ i . (2)

Projecting to P(T B), the horizontal lift of e onW at ζ = ζ1/ζ0 is given by

ẽ = e −
(
ω1

0 + ζ(ω
1
1 − ω

0
0)− ζ

2ω0
1

)
(e)

∂

∂ζ
. (3)

Now we define a rank 1 distribution LR on WR as the tautological lifts, i.e. LR,(x,ζ ) is the horizontal lift of the
tangent line 〈∂0 + ζ∂1〉, where x ∈ B and ζ ∈ RP1 ∼= WR,x is the local fiber coordinate. From (3), we obtain
LR = 〈n〉 where

n = ∂0 + ζ∂1 −
(
ω1

0 + ζ(ω
1
1 − ω

0
0)− ζ

2ω0
1

)
(∂0 + ζ∂1)

∂

∂ζ
. (4)

We can define a complex distribution L on W+ by L = 〈n〉, where n is extended to the vector field on W+ by the
analytic continuation for ζ ∈ CP1. By definition, we have L|WR = LR ⊗C. If we put K = L + 〈 ∂

∂ζ̄
〉, then K defines

an almost complex structure onW+ \WR since K satisfies TW+ ⊗ C = K ⊕ K̄ onW+ \WR.
Torsion-free connections ∇ and ∇ ′ on B are called projectively equivalent if and only if they define exactly the

same unparameterized geodesics. We call a projective structure for a projectively equivalent class [∇].

Proposition 1 (LeBrun and Mason [7]).
(1) L and K are defined only by [∇],
(2) L and K are integrable.
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Definition 2. A projective structure (B, [∇]) is called Zoll if and only if all of the maximal geodesics on B are closed.

Theorem 3 (LeBrun and Mason [7]). There is a one-to-one correspondence between

• equivalence classes of oriented Zoll projective structures (B, [∇]), and
• equivalence classes of totally real embeddings ι : RP2

→ CP2,

when they are close to the standard structures. The correspondence is characterized by a double fibration
B

p
←(W+,WR)

q
→(CP2, N ), where N = ι(RP2), p is the projection, and q is a surjection which is holomorphic

on the interior of W+.

The rough sketch of the proof is the following. If (B, [∇]) is given, then we can construct (W+,WR) equipped
with a rank 1 foliation onWR. Collapsing this foliation, we obtain the space (CP2, N ). Conversely, if ι is given, then
there is a family of holomorphic disks in CP2 such that the boundaries of disks are contained in N and that this family
defines a foliation on CP2

\ N . We also remark that each holomorphic disk in this family is characterized by the
condition: the relative homology class of the disk generates H2(CP2, N ) ∼= Z. We define B to be the parameter space
of this family. Then a Zoll projective structure [∇] on B is induced so that each closed geodesic is written in the form
p ◦ q−1(ζ ) for some ζ ∈ N . Notice that such a family of holomorphic disks is uniquely determined as a deformation
of the standard family if ι is close enough to the standard embedding.

3. Neutral metric

Let M be an oriented four-dimensional manifold, and let g be a neutral metric on M where a neutral metric is an
indefinite metric of split signature. An oriented local frame (e0, e1, e2, e3) of the tangent bundle T M is called a null
tetrad if and only if its metric tensor gµν = g(eµ, eν) is given by

g = (gµν) =


1

−1
−1

1

 . (5)

Notice that, if (eµ) is a null tetrad, then we obtain g(λ, λ) = det
(
λ0 λ2

λ1 λ3

)
for a tangent vector λ =

∑
λµeµ. When we

make use of null tetrads, the structure group of T M reduces to the Lie group

SO(2, 2) :=
{

P ∈ SL(4,R) : t P g P = g
}
. (6)

SO(2, 2) has two connected components and we denote the identity component as SO0(2, 2).

Definition 4 (Cf. [8]). M is called space–time orientable when the structure group of T M reduces to SO0(2, 2).

Let SL(2,R)+ and SL(2,R)− be copies of SL(2,R). For each (A, B) ∈ SL(2,R)+ × SL(2,R)−, the
transformation(

e0 e2
e1 e3

)
7−→ A

(
e0 e2
e1 e3

)
t B

defines an element of SO0(2, 2). In this way, we obtain a double covering SL(2,R)+×SL(2,R)−→ SO0(2, 2). The
corresponding Lie algebra isomorphism o(2, 2) ' sl(2,R)+ ⊕ sl(2,R)− is given by

a b e 0
c d 0 e
f 0 −d b
0 f c −a

 7−→
a − d

2
b

c
d − a

2

⊕
a + d

2
e

f −
a + d

2

 . (7)

Taking M smaller, we can assume that M is space–time oriented and the structure group of T M lifts to SL(2,R)+ ×
SL(2,R)−. Then we obtain a decomposition T M = S+ ⊗ S−, and the Levi-Civita connection ∇ on M induces the
connections ∇± on S±. S± are called the positive and negative spin bundles, and ∇± are called spin connections. If
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we take a local null tetrad (eµ) on T M , then ∇ is represented by the connection form ω, where ω is a o(2, 2)-valued
1-form, and the connection forms ω± of ∇± are sl(2,R)±-valued 1-forms, which are defined as the components of
the decomposition of ω by (7).

There is an eigenspace decomposition ∧2
= ∧

+
⊕∧
− with respect to Hodge’s ∗-operator, where ∧2

= ∧
2 T M

and ∧± are the eigenspaces for the eigenvalues ±1. Let V be a null 2-plane in Tx M and v1, v2 be the basis of V; then
the bivector v1 ∧ v2 belongs to ∧+ or ∧−.

Definition 5. Let V = 〈v1, v2〉 ⊂ Tx M be a null 2-plane. V is called an α-plane if v1 ∧ v2 ∈ ∧
+, and V is called a

β-plane if v1 ∧ v2 ∈ ∧
−. Let S ⊂ M be an embedded surface and suppose that S is totally null, i.e. Tx S ⊂ Tx M is

null for every x ∈ S. S is called an α-surface if Tx S is an α-plane for every x ∈ S. A β-surface is defined in a similar
way.

Let (M, g) be a space–time oriented neutral manifold, and (eµ) be a null tetrad on an open set U ⊂ M . From now
on, we define e2 = φ0, e3 = φ1 for later convenience. The following lemma is checked by a direct calculation.

Lemma 6. ∧+ = 〈ϕ1, ϕ2, ϕ3〉 ,∧
−
= 〈ψ1, ψ2, ψ3〉 , where

ϕ1 = e0 ∧ e1, ϕ2 = φ0 ∧ φ1, ϕ3 =
1
√

2
(e0 ∧ φ1 − e1 ∧ φ0),

ψ1 = e0 ∧ φ0, ψ2 = e1 ∧ φ1, ψ3 =
1
√

2
(e0 ∧ φ1 + e1 ∧ φ0).

(8)

The neutral metric g induces indefinite metrics on ∧± whose metric tensors are both given by the following matrix
with respect to the frames (8):

h =

 0 1 0
1 0 0
0 0 −1

 . (9)

Let h be a Lie algebra defined by

h =
{

X ∈ gl(3,R) : t X h + h X = 0
}
=


a 0 c

0 −a b
b c 0

 .
The Levi-Civita connection ∇ induces connections on ∧± whose connection forms are represented by an h-valued
1-form with respect to the frames (8).

We can check that the exterior product representation associated with ∧− is

ρ− :


a b e 0
c d 0 e
f 0 −d b
0 f c −a

 7−→
a − d 0

√
2c

0 d − a
√

2b
√

2b
√

2c 0

 . (10)

So the connection form of the induced connection on ∧− is given by the h-valued 1-form θ = (θk
l ) = ρ

−(ω), where ω
is the connection form of the Levi-Civita connection. This connection naturally induces the connection on ∧−C, where
∧
−

C = ∧
−
⊗C is the complexification. The horizontal lift of a tangent vector e on M at λkψk ∈ ∧

−

C is

ẽ = e − θk
l (e)λ

l ∂

∂λk . (11)

Let Z = {[ψ] ∈ P(∧−C) : g(ψ,ψ) = 0} and ZR = {[ψ] ∈ P(∧−) : g(ψ,ψ) = 0}. Let p : Z → M and
pR : ZR→ M be the projections. Then a trivialization of Z on the open set U ⊂ M is given by

ι : CP1
×U

∼
−→Z|U : ([ζ0 : ζ1], x) 7−→ [ζ 2

0ψ1 + ζ
2
1ψ2 +

√
2ζ0ζ1ψ3 ]x . (12)
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This is nothing but the correspondence between the fiber coordinate [ζ0 : ζ1] ∈ CP1 and the complex β-plane
〈ζ0e0 + ζ1e1, ζ0φ0 + ζ1φ1〉 , since we have

(ζ0e0 + ζ1e1) ∧ (ζ0φ0 + ζ1φ1) = ζ
2
0ψ1 + ζ

2
1ψ2 +

√
2ζ0ζ1ψ3.

Restricting the fiber coordinate [ζ0 : ζ1] to RP1, we also obtain a trivialization of ZR, and each point in ZR
corresponds to a real β-plane in the same manner.

Let βu ⊂ Tx M ⊗ C be the complex β-plane corresponding to u ∈ Z \ ZR, where x = p(u). Since
Tx M ⊗ C = βu ⊕ β̄u , z defines a complex structure J on Tx M , and it is easy to check that J preserves the metric g.
Let Z ◦+ be one of the two connected components of Z \ZR whose element defines an orientation preserving complex
structure, and we put Z ◦− as the other component. Let Z± be the closures of Z ◦±; then we have

Z = Z ◦+ ∪ Z ◦− ∪ ZR = Z+ ∪ Z−.

Let ∧−C
π
→P(∧−C) be the projectivization; then we obtain, at (λ1, λ2, λ3) = (ζ 2

0 , ζ
2
1 ,
√

2ζ0ζ1),

π∗

(
θk

l λ
l ∂

∂λk

)
=

(
b + ζ(d − a)− ζ 2c

)
ι∗

(
∂

∂ζ

)
, (13)

where ζ = ζ1/ζ0 is the non-homogeneous coordinate. From (11), the horizontal lift of the tangent vector e on M to Z
is

ẽ = e −
(

b + ζ(d − a)− ζ 2c
)
(e)

∂

∂ζ
. (14)

We can define a rank 2 distribution ER on ZR as the tautological lifts, i.e. ER,(x,ζ ) is the horizontal lift of the
β-plane 〈e0 + ζe1, φ0 + ζφ1〉, where x ∈ M and ζ ∈ RP1 ∼= ZR,x . ER is called the twistor distribution [4] or the
Lax distribution [2]. From (14), we obtain ER = 〈m1,m2〉 where

m1 = e0 + ζe1 + Q1(ζ )∂ζ , Q1(ζ ) = −(b + ζ(d − a)− ζ 2c)(e0 + ζe1),

m2 = φ0 + ζφ1 + Q2(ζ )∂ζ , Q2(ζ ) = −(b + ζ(d − a)− ζ 2c)(φ0 + ζφ1).
(15)

We can define a complex distribution E on Z+ by E = 〈m1,m2〉, where m1 and m2 are extended to the vector fields
on Z+ analytically for ζ ∈ CP1. By definition, we have E |ZR = ER ⊗ C. If we put D = E + 〈 ∂

∂ζ̄
〉, then D defines

an almost complex structure on Z+ \ZR since TZ+ ⊗C = D ⊕ D̄ on Z+ \ZR. The following theorem is basic and
proved in [8], and see also [4].

Theorem 7. (1) E and D are defined only by the conformal class [g].
(2) ER is Frobenius integrable if and only if [g] is self-dual. Moreover, the almost complex structure on Z+ \ ZR

defined from D is integrable if and only if [g] is self-dual.

Definition 8. Let (M, [g]) be a neutral self-dual conformal structure; then (M, [g]) is called Zollfrei if and only if all
of the maximal null geodesics on M are closed.

Theorem 9 (LeBrun and Mason [8]). There is a one-to-one correspondence between

• equivalence classes of space–time oriented self-dual Zollfrei conformal structures (M, [g]), and
• equivalence classes of totally real embeddings ι : RP3

→ CP3,

when they are close to the standard structures. The correspondence is characterized by a double fibration
M

p
←(Z+,ZR)

q
→(CP3, P), where P = ι(RP3), p is the projection, and q is a surjection which is holomorphic

on the interior of Z+.

The proof is conceptually similar to that of Theorem 3. M is defined from ι as the parameter space of the family
of holomorphic disks in (CP3, P) foliating CP3

\ P . Such a family is uniquely determined if ι is close enough to the
standard embedding.
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4. α-surface foliation

Let (M, g) be a 4-manifold with a neutral metric, and we now suppose that there is a smooth α-surface foliation
$ : M → B, i.e. $ is a smooth surjection to a 2-manifold B such that each fiber $−1(b) on b ∈ B is an α-surface.
Let x ∈ M and b = $(x) ∈ B; then we can take a local coordinate (x0, x1, x2, x3) around x and a coordinate
(y0, y1) around b so that (x0, x1, x2, x3)

$
7→(y0, y1) = (x0, x1). Let V = 〈 ∂

∂x2 ,
∂

∂x3 〉 be the vertical distribution, and
we use the notation ∂xµ =

∂
∂xµ and so on.

Proposition 10. There is a null tetrad (e0, e1, φ0, φ1) on T M which satisfies

(1) e0 = ∂x0 + α0 and e1 = ∂x1 + α1 for some vertical vector fields α0, α1 ∈ Γ (V),
(2) φ0 and φ1 are vertical, i.e. φ0, φ1 ∈ Γ (V).

Proof. We take e0 and e1 as follows. Let V ′ be an α-plane distribution which is transverse to V everywhere, where
V ′ is not necessary integrable. Since T M = V ⊕ V ′, the map $∗ : V ′

∼
→$ ∗T B is an isomorphism, and we can take

e0, e1 ∈ Γ (V ′) so that $∗(ei ) = ∂yi for i = 0, 1. If we put αi = ei − ∂x i , then αi ∈ Γ (V), so (1) holds.
Now φ0 and φ1 are uniquely determined so that (2) holds. Actually, if we put φ0 = a∂x2 + b∂x3 , then we have(
−1
0

)
=

(
g(∂x1 , ∂x2) g(∂x1 , ∂x3)

g(∂x0 , ∂x2) g(∂x0 , ∂x3)

) (
a
b

)
from g(e1, φ0) = −1 and g(e0, φ0) = 0. If the 2 × 2 matrix in the right hand side is not invertible, then there
is a pair of real numbers (p, q) 6= (0, 0) such that g(∂x0 , p∂x2 + q∂x3) = g(∂x1 , p∂x2 + q∂x3) = 0, and then
g(∂xµ , p∂x2 + q∂x3) = 0 for µ = 0, 1, 2, 3. This contracts to the non-degeneracy of g, so the matrix is invertible, and
(a, b) is determined uniquely. φ1 is determined uniquely in a similar way. �

We denote as ω the connection form of the Levi-Civita connection with respect to the null tetrad (e0, e1, φ0, φ1).
Then ω is a o(2, 2)-valued 1-form, and we denote the elements in the same way as in (10).

Lemma 11. The following equations hold:

e(φ0) = e(φ1) = 0,
e(e0) = a(φ0) = c(φ1),

e(e1) = b(φ0) = d(φ1),

a(φ1) = c(φ0) = 0,
b(φ1) = d(φ0) = 0, (16)

[φ0, φ1] = (b(φ0)+ d(φ1))φ0 − (a(φ0)+ c(φ1))φ1,

[e0, φ0] = −(d(e0)+ f (φ0))φ0 + c(e0)φ1,

[e0, φ1] = (b(e0)− f (φ1))φ0 − a(e0)φ1,

[e1, φ0] = −d(e1)φ0 + (c(e1)− f (φ0))φ1,

[e1, φ1] = b(e1)φ0 − (a(e1)+ f (φ1))φ1.

(17)

Proof. Since the Levi-Civita connection ∇ is torsion-free, we have

[φ0, φ1] = ∇φ0φ1 −∇φ1φ0

= {e(φ0)e1 + b(φ0)φ0 − a(φ0)φ1} − {e(φ1)e0 − d(φ1)φ0 + c(φ1)φ1}.

Since V = 〈φ0, φ1〉 is integrable, we have [φ0, φ1] ∈ V . Then we obtain

e(φ1) = e(φ0) = 0 (18)

and the equation for [φ0, φ1] in (17). By a calculation similar to that for [ei , φ j ] ∈ V , we can check all the equations.
�

In the rest of this section, we assume an additional condition: the neutral metric g is self-dual. Then m1 and m2
defined in (15) satisfy the following properties.

Lemma 12. Q2(ζ ) = 0 and (φ0 + ζφ1)Q1(ζ ) = 0.
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Proof. Since E is integrable, [m1,m2] ⊂ 〈m1,m2〉. Now we have

[m1,m2] = [e0, φ0] + ζ
2
[e1, φ1] + ζ([e0, φ1] + [e1, φ0])+ (e0 + ζe1)Q2(ζ )∂ζ − Q2(ζ )e1

+ Q1(ζ )φ1 − (φ0 + ζφ1)Q2(ζ )∂ζ + (Q1(ζ )Q′2(ζ )− Q2(ζ )Q′1(ζ ))∂ζ .

Since [e0, φ0] ∈ V and so on, we can write [m1,m2] = β(ζ )m2 by using some function β(ζ ). At the same time, we
obtain the required equations. �

Lemma 13. The following equations hold:

e = 0, a(φi ) = b(φi ) = c(φi ) = d(φi ) = 0, b = c. (19)

In particular we obtain [φ0, φ1] = 0 from (17).

Proof. From Q2(ζ ) = 0, we have

b(φ0) = 0, (d − a)(φ0)+ b(φ1) = 0,
c(φ1) = 0, (a − d)(φ1)+ c(φ0) = 0.

Then the first and the second equations in (19) follow from these equations and (16).
Now let Q1(ζ ) = q0 + q1ζ + q2ζ

2
+ q3ζ

3, i.e.

q0 = −b(e0), q1 = −(d − a)(e0)− b(e1),

q3 = c(e1), q2 = (a − d)(e1)+ c(e0).
(20)

We can write [m1,m2] = β(ζ )m2 from the proof of Lemma 12, and we can put β(ζ ) = β0 + β1ζ + β2ζ
2 from the

relation of the degree; then from a direct calculation, we obtain

[e0, φ0] = β0φ0 − q0 φ1,

[e0, φ1] + [e1, φ0] = β1φ0 + (β0 − q1)φ1,

[e1, φ1] = β2φ0 + (β1 − q2)φ1,

0 = (β2 − q3)φ1.

(21)

Comparing with (17), and using (20), we have b(ei ) = c(ei ). Since we already have b(φi ) = c(φi ), so we obtain
b = c. �

Lemma 14. The following equations hold:

φ0b(e0) = φ1b(e1) = 0,
φ0(a − d)(e0) = φ1(d − a)(e1) = φ0b(e1)+ φ1b(e0),

φ0(a − d)(e1) = φ1(d − a)(e0).

(22)

Proof. Directly deduced from (20) and (φ0 + ζφ1)Q1(ζ ) = 0. �

Proposition 15. Let g be a neutral self-dual metric on a four-dimensional manifold M and $ : M → B be an
α-surface foliation. Then there is a local coordinate (x0, x1, x2, x3) on M so that ker$∗ = 〈∂x2 , ∂x3〉 and that the
metric tensor for g can be written in the form

g = (gi j ) =


p r 0 1
r q −1 0
0 −1 0 0
1 0 0 0

 . (23)

Moreover, p, q and r satisfy the following equations:
∂2

2 p = ∂2
3 q = 0,

∂2
3 p + ∂2

2 q = 0,

∂2
2r + ∂2∂3 p = ∂2

3r + ∂2∂3q = 0,

(24)
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where ∂µ = ∂xµ . Conversely, for any functions p, q and r satisfying (24), the neutral metric defined by (23) is self-dual
and has a natural α-surface foliation.

Proof. For given (M, g) and $ , we can take a coordinate (x0, x1, x2, x3) and a null tetrad (e0, e1, φ0, φ1) on M as
in Proposition 10. Since we have [φ0, φ1] = 0 from Lemma 13, we can change the coordinates x2, x3 to w2, w3 so
that φ0 = ∂w2 , φ1 = ∂w3 . So we can start from φ0 = ∂x2 , φ1 = ∂x3 . Then the metric tensor is written in the form (23),
since we have

g(∂0, ∂2) = g(e0 − α0, φ0) = 0,
g(∂1, ∂2) = g(e1 − α1, φ0) = −1,

and so on.
Now we check that the metric in the form (23) is self-dual if and only if (24) holds. We take a frame on T M of the

form 
e0 = ∂0 +

1
2
(r∂2 − p∂3),

e1 = ∂1 +
1
2
(q∂2 − r∂3),

{
φ0 = ∂2,

φ1 = ∂3.
(25)

Then (e0, e1, φ0, φ1) is a null tetrad satisfying the conditions of Proposition 10. Calculating [ei , φ j ] and so on, and
comparing with (17), we have

2a(e0) = −∂3 p, 2b(e0) = ∂2 p, 2d(e0) = ∂3q + 2∂2r

2a(e1) = −∂2 p − 2∂3r, 2b(e1) = −∂3q, 2d(e1) = ∂2q.
(26)

We obtain (24) by evaluating these equations using (22). �

Remark 16. The form of the metric (23) coincides with the Walker canonical form (Theorem 1 of [14]; see also [9,
10]), and in the special case with the ASD null Kähler canonical form (Theorem 3.2 of [3]).

5. Basic foliation

Let (M, g) be a space–time oriented 4-manifold with a neutral metric, and let $ : M → B be an α-surface
foliation.

Definition 17. We define $ as basic if and only if the curvature Ω+ of the spin connection ∇+ on S+ defined by (7)
is basic, i.e. i(v)Ω+ = 0 for every vertical vector v ∈ ker$∗.

We use the same local descriptions as in Section 4. Then the following lemma is proved by a direct calculation.

Lemma 18. If g is self-dual, then $ is basic if and only if

φi b(e j ) = φi (a − d)(e j ) = 0 for i, j = 0, 1. (27)

Moreover (27) is equivalent to the equations φi qn = 0 for i = 0, 1 and n = 0, 1, 2, 3, where Q1(ζ ) =

q0 + q1ζ + q2ζ
2
+ q3ζ

3.

Proposition 19. Suppose that $ is basic, and that g is self-dual; then $ is also basic for the conformal deformation
g̃ = ϕg, where ϕ is a non-vanishing function on M.

Proof. Let (e0, e1, φ0, φ1) be a null tetrad on (M, g) which satisfies the conditions in Proposition 10; then
(ẽ0, ẽ1, φ̃0, φ̃1) = (e0, e1, ϕ

−1φ0, ϕ
−1φ1) is a null tetrad on (M, g̃) and satisfies the same conditions. Let m1,m2

be the frame of the twistor distribution defined by (15) with respect to g. In the same way, we define m̃1, m̃2 with
respect to g̃, and we define

m̃1 = ẽ0 + ζ ẽ1 + Q̃1(ζ )∂ζ , Q̃1(ζ ) = q̃0 + q̃1ζ + q̃2ζ
2
+ q̃3ζ

3,
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and so on. Since Q2(ζ ) = Q̃2(ζ ) = 0 in this case, we have m̃2 = ϕ−1m2. Now 〈m1,m2〉 = 〈m̃1, m̃2〉 = ER
by Theorem 7, so we obtain m̃1 = m1 and q̃n = qn . Then, for every i = 0, 1 and n = 0, 1, 2, 3, we have
φ̃i q̃n = ϕ

−1φi qn = 0 by Lemma 18. Hence $ is also basic for g̃. �

Proposition 20 (Cf. [2]). Let (M, g) be a 4-manifold with a neutral self-dual metric and$ : M → B be an α-surface
foliation. If $ is basic, then there is a unique projective structure [∇] which satisfies the following condition:

• the image of each β-surface by $ is a geodesic on B.

Conversely, if the above condition holds for some projective structure on B, then $ is basic.

Proof. We take coordinate neighborhoods U ⊂ M and V = $(U ) ⊂ B so that the coordinates are written in
the manner of Section 4. Let (e0, e1, φ0, φ1) be the null tetrad given by Proposition 10. Using the trivialization
of ZR, (x, ζ ) ∈ U × RP1 ∼= ZR|U corresponds to the β-surface β(ζ ) = 〈e0 + ζe1, φ0 + ζφ1〉x . Then we have
$∗(β(ζ )) = 〈∂y0+ζ∂y1〉$(x), and this is a line in T$(x)B that corresponds to the point ($(x), ζ ) ∈ V ×RP1

'WR.
In this way, we obtain a map ΠR : ZR→WR which extends holomorphically to the map Π : Z+→W+.

Using the above coordinates, we have

Π∗(m1) = ∂0 + ζ∂1 + Q1(ζ )∂ζ , Q1(ζ ) = q0 + q1ζ + q2ζ
2
+ q3ζ

3,

Π∗(m2) = 0.
(28)

If there is a projective structure [∇] on B satisfying the condition in the statement, then Π∗(E) = L , i.e. 〈n〉 =
〈Π∗(m1)〉. This equation holds only if φi qn = 0, so $ is basic by Lemma 18.

Conversely, if $ is basic, then Π∗(E) defines a complex distribution on W+. Then we can define a torsion-free
connection on B so that n = Π∗(m1). Actually, one of the examples of such a connection is given as follows. Now
b and a − d define a 1-form on V from (27), so we can define a connection whose connection form (ωi

j ) is given by
ω0

1 = ω
1
0 = b, and

ω0
0(∂y0) = (a − d)(∂y0)+ b(∂y1), ω0

0(∂y1) = b(∂y0),

ω1
1(∂y0) = b(∂y1), ω1

1(∂y1) = (d − a)(∂y1)+ b(∂y0).

Then this connection is torsion-free and the equation n = Π∗(m1) holds on V = $(U ). This means that the condition
in the statement holds. Since the projective structure is exactly classified by the geodesics, such a projective structure
[∇] is uniquely defined. �

Example 21. Let (x0, x1, x2, x3) be a coordinate on R4, and consider a metric g on R4 whose metric tensor
gµν = g(∂xµ , ∂xν ) is given by

g = (gi j ) =


p r 0 1
r p −1 0
0 −1 0 0
1 0 0 0

 , where
{

p = −2x2x3,

r = (x2)2 + (x3)2.

Then g is neutral and self-dual; however the α-surface foliation defined from the integrable distribution V = 〈∂x2 , ∂x3〉

is not basic. Actually, if we take a null tetrad in the form of (25), then we have

φ0b(e1) = φ1b(e0) = 2 6= 0, (29)

so (27) does not hold. Note that the above metric has in fact constant curvature.

6. Global structure: Main theorem and the mini-twistor version

In this section and Section 7, we treat the global structure. From now on, we write simply “β-surface” for the
maximal β-surface. The following properties are proved by LeBrun and Mason in [8].

Proposition 22. Let (M, [g]) be a space–time oriented self-dual Zollfrei conformal structure; then

(1) any two β-surfaces intersect at exactly two points,
(2) every β-surface is a totally geodesic embedded S2,
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(3) for every β-surface β, the restriction of the Levi-Civita connection of g to β defines a Zoll projective structure
which depends only on the conformal class [g]; moreover this is isomorphic to the standard Zoll projective
structure on S2.

Suppose there is a closed α-surface on M ; then it satisfies the following lemma.

Lemma 23. Let (M, [g]) be a space–time oriented self-dual Zollfrei conformal structure, and let α be a closed α-
surface on M, then

(1) α is a totally geodesic embedded S2,
(2) the restriction of the Levi-Civita connection of g to α defines a Zoll projective structure which depends only on

the conformal class [g],
(3) for every β-surface β, the intersection of α and β is either empty or S1 which is a geodesic on both α and β for

the induced projective structure.

Proof. In the same way as for Proposition 22, we can check that α is totally geodesic and that [g] induces a projective
structure on α. Then (1) and (2) follow from the Zollfrei condition. Let β be a β-surface; then α∩β is totally geodesic
in M . This is either empty or a one-dimensional manifold, since any α-plane and any β-plane intersect in a one-
dimensional subspace at a point. So this is a closed geodesic on M . Since α and β are totally geodesic, (3) holds.

�

We now study self-dual Zollfrei conformal structures with α-surface foliation.

Definition 24. Let (M, [g], S∞,F) be the quartet of the space–time oriented self-dual Zollfrei conformal structure
(M, [g]), a β-surface S∞ and a family F of closed α-surfaces which satisfies the following properties: (i) every α-
surface α ∈ F has non-empty intersection with S∞, (ii) F defines a smooth foliation on M \ S∞. Two such quartets
are said to be equivalent if and only if there is a conformal isomorphism between them which preserves S∞ and F .
We defineM to be the set of equivalence classes of such quartets.

Definition 25. We define M̄ to be the set of conformal equivalence classes of space–time oriented self-dual Zollfrei
conformal structures (M, [g]). Then we have a natural forgetting mapM→ M̄.

If there are no confusions, we abuse the notation of a quartet (M, [g], S∞,F) for its equivalence class, and similarly
for a pair (M, [g]).

Lemma 26. Let (M, [g], S∞,F) be an element of M, and let β be a β-surface different from S∞; then β ∩ S∞ is the
set of antipodal points of β with respect to the induced standard Zoll projective structure on β. Moreover, for α ∈ F ,
α ∩ β contains β ∩ S∞ if α ∩ β is not empty.

Proof. If we take a point in β \ S∞, then there is a unique α1 ∈ F which contains this point. If we take the other point
on β \ (S∞ ∪ α1), then there is a unique α2 ∈ F again which contains this point. Then α1 ∩ β and α2 ∩ β are different
geodesics on β, so α1 ∩ α2 ∩ β equals the set of antipodal points of β. These points belong to both α1 and α2, so they
must belong to S∞. On the other hand, β ∩ S∞ is just two points, so β ∩ S∞ = α1 ∩ α2 ∩ β. Hence β ∩ S∞ is the set
of antipodal points of β. The latter statement is now obvious. �

Lemma 27. For (M, [g], S∞,F) ∈ M, each α-surface in F one-to-one corresponds with a closed geodesic of S∞.

Proof. Each α-surface α ∈ F determines a closed geodesic α ∩ S∞ on S∞. We prove that this correspondence is
bijective. The injectivity follows at once since the α-surface is totally geodesic. So we check the surjectivity. It is
enough to show that, for each x ∈ S∞ and each one-dimensional subspace l ⊂ Tx S∞, there is an α-surface α ∈ F
such that Txα∩ Tx S∞ = l. There is a unique α-plane H ⊂ Tx M which contains l, and we can take a one-dimensional
subspace l ′ ⊂ H different from l. Let c be a closed null geodesic of M which is tangent to l ′ at x . We can take
y ∈ c \ S∞ since l ′ is not tangent to S∞. Then there is a unique α-surface α ∈ F containing y, and there is a unique
β-surface β with c ⊂ β. Since y ∈ α ∩ β, α ∩ β is non-empty and is a closed geodesic on β. Since α ∩ β contains
β ∩ S∞ and y by Lemma 26, this is equal to c. Then we have x ∈ α and Txα = H , so we have Txα ∩ Tx S∞ = l as
required. �
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Let G̃(S∞) be the set of oriented closed geodesics on S∞. G̃(S∞) has natural smooth structure since the induced
projective structure on S∞ is standard. G̃(S∞) is diffeomorphic to S2, and has natural Zoll projective structure induced
from S∞ so that a geodesic on G̃(S∞) corresponds to the set of oriented geodesics on S∞ containing one fixed point.

Proposition 28. Let (M, [g], S∞,F) be an element of M; then there is a natural identification between G̃(S∞) and
the leaf space B of the foliation on M \ S∞ defined by F .

Proof. For every α ∈ F , α is diffeomorphic to S2, and S∞ ∩ α = S1, so (M \ S∞) ∩ α is disjoint union of a pair
of disks. Hence M \ S∞ is foliated by such disks. Each α ∈ F has natural orientation defined from the space–time
orientation on M , so each disk of the foliation is oriented. Then the natural orientation is induced on the boundary of
each disk. In this way, the leaf space B naturally corresponds to G̃(S∞). �

Proposition 29. For (M, [g], S∞,F) ∈ M, the α-surface foliation on M \ S∞ induced from F is basic, and the
projective structure induced on the leaf space B is isomorphic to the standard Zoll projective structure.

Proof. We already know that B = G̃(S∞) has the standard Zoll projective structure induced from S∞. We now check
that this projective structure equals the one induced from the α-surface foliation. Then this α-surface foliation is
automatically basic from Proposition 20.

Let β be any β-surface different from S∞. It is enough to check that the set of all the leaves intersecting with β
corresponds to some closed geodesic on B with respect to the above Zoll projective structure. From Lemma 26, an
α-surface α ∈ F intersects β if and only if α ∩ S∞ contains the antipodal points β ∩ S∞. Hence the set of α-surfaces
in F intersecting β corresponds to the set of closed geodesics on S∞ containing β ∩ S∞ under the correspondence of
Lemma 27. Such a set is a closed geodesic on G̃(S∞). �

Let RPn
⊂ CPn be the standard real submanifold.

Definition 30. Let (ι, ζ0) be the pair of a totally real embedding ι : RP3
→ CP3 and a point ζ0 ∈ P = ι(RP3) which

satisfy:

• π(P \ {ζ0}) = RP2 for the projection π : CP3
\ {ζ0} → CP2, where CP2 is the space of complex lines in CP3

through ζ0, and this equation means that the image π(P\{ζ0}) is mapped to the standard RP2 by some holomorphic
automorphism on CP2,
• let CP1

ξ = π−1(ξ) ∩ {ζ0} and Pξ = CP1
ξ ∩ P for each ξ ∈ π(P \ {ζ0}); then (CP1

ξ , Pξ ) is biholomorphic to
(CP1,RP1), i.e. there is a biholomorphic map CP1

ξ → CP1 which maps Pξ to RP1.

Two such pairs (ι, ζ0) and (ι′, ζ ′0) are said to be equivalent if and only if there is a holomorphic automorphism ϕ

on CP3 which satisfies ι′ = ϕ ◦ ι and ζ ′0 = ϕ(ζ0). We define T to be the set of equivalence classes of such pairs.

Definition 31. We define T̄ to be the set of equivalence classes of totally real embeddings ι : RP3
→ CP3. Then we

have a natural forgetting map T → T̄ .

We abuse the notation (ι, ζ0) or ι for their equivalence classes. Our main theorem is the following. We define
fM :M→ M̄ and fT : T → T̄ as the forgetting maps.

Theorem 32. Let U ⊂ M̄ and V ⊂ T̄ be subsets containing the standard elements on which the one-to-one
correspondence in the sense of Theorem 9 holds. Then there is a one-to-one correspondence between f −1

M (U ) and
f −1
T (V ) which satisfies the following properties: if (M, [g], S∞,F) corresponds to (ι, ζ0), then

(1) (M, [g]) corresponds to ι in the sense of Theorem 9, i.e. this correspondence covers the correspondence between
U and V ,

(2) the standard double fibration B ← W+ → CP2 is induced by using the maps $ : M \ S∞ → B and
π : CP3

\ {ζ0} → CP2, where $ is the α-surface foliation defined from F and π is the projection from ζ0.

Before we start to prove Theorem 32, we argue about a mini-twistor version in the rest of this section. The situation
is described in the diagram (30).
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Definition 33. Let (S2, [∇],C) be the triple of an oriented Zoll projective structure (S2, [∇]) and a closed geodesic
C on S2 which satisfies: (i) there is a smooth involution σ on C , and (ii) for every x ∈ C and every closed geodesic
c through x , c passes through σ(x). We call σ(x) the antipodal point of x and write x̄ for σ(x). Two such triples are
said to be equivalent if and only if there is an automorphism on S2 which preserves [∇], C , and the involution. We
defineM0 to be the set of equivalence classes of such triples.

Definition 34. We define M̄0 to be the set of equivalence classes of oriented Zoll projective structures (S2, [∇]).
Then we have a forgetting mapM0 → M̄0.

Definition 35. Let (ι, ζ0) be the pair of a totally real embedding ι : RP2
→ CP2 and a point ζ0 ∈ N = ι(RP2) which

satisfy:

• π(N \ {ζ0}) = RP1 where π : CP2
\ {ζ0} → CP1 is the projection,

• let CP1
ξ = π

−1(ξ) ∪ {ζ0} and Nξ = CP1
ξ ∩ N ; then (CP1

ξ , Pξ ) is biholomorphic to (CP1,RP1).

We define T0 to be the set of equivalence classes of such pairs, where the equivalence is defined in the same manner
as in Definition 30.

Definition 36. We define T̄0 to be the set of equivalence classes of the totally real embeddings ι : RP2
→ CP2. Then

we have a forgetting map T0 → T̄0.

We abuse the notation (S2, [∇],C) for its equivalence class and so on, and we define fM0 : M0 → M̄0 and
fT0 : T0 → T̄0 as the forgetting maps.

Theorem 37. Let U0 ⊂ M̄0 and V0 ⊂ T̄0 be subsets containing the standard elements on which the one-to-one
correspondence in the sense of Theorem 3 holds. Then there is a one-to-one correspondence between f −1

M0
(U0) and

f −1
T0
(V0) which covers the correspondence between U0 and V0.

Proof. We start from an element (S2, [∇],C) ∈ M0. If (S2, [∇]) ∈ U0, then we have a double fibration
S2 p1
←−(W+,WR)

q1
−→(CP2, N ) from Theorem 3, where N is the image of the totally real embedding ι : RP2

→

CP2. We define ζ0 ∈ N to be the point corresponding to C , i.e. ζ0 is the point such that C = p1◦q−1
1 (ζ0). Let x ∈ C be

any point, and x̄ be its antipodal point, and Dx , Dx̄ be the holomorphic disks on (CP2,N), i.e. Dx = q1 ◦ p−1
1 (x) and

so on. Notice that ζ0 ∈ Dx and ζ0 ∈ Dx̄ . Since each point on ∂Dx ⊂ N corresponds to some closed geodesic on S2

containing x , and since such geodesics also contain x̄ from the definition, we have ∂Dx = ∂Dx̄ . Hence lx = Dx ∪ Dx̄
defines a rational curve on CP2, and this is proved to be a complex line. Actually, let y ∈ C be a point different from
x and x̄ , and ly be a rational curve defined in the same way as above. Then lx ∩ ly = {ζ0}; moreover ∂Dx and ∂Dy
intersect transversely in N , so lx and ly intersect only on ζ0 transversely. Hence lx must be a complex line.

Let π : CP2
\ {ζ0} → CP1 be a natural projection. From the above argument, we see that π maps lx \ {ζ0} to

a point. N \ {ζ0} is foliated by lines in the form of ∂Dx \ {ζ0}, and such a line one-to-one corresponds to a pair of
antipodal points {x, x̄} in C . Since π(N \ {ζ0}) is the quotient space of such a line foliation, it is diffeomorphic to
C/Z2 ' RP1. Since N is a totally real embedded RP2, it follows that π(N \ {ζ0}) is also a totally real submanifold in
CP1. Hence (CP1, π(N \ {ζ0})) is biholomorphic to (CP1,RP1), and (ι, ζ0) defines an element of T .

Next we start from (ι, ζ0) ∈ T . If ι ∈ V0, then we have a double fibration S2 p1
←−(W+,WR)

q1
−→(CP2, N ). We

define C = p1 ◦ q−1
1 (ζ0), and we prove that there is a natural involution σ on C .

(CP1
ξ , Nξ ) consists of two holomorphic disks D1 and D2 with ∂D1 = ∂D2 = Nξ for every ξ ∈ RP1. Since D1

and D2 define generators of H2(CP2, N ), they correspond to some points x1 and x2 in S∞ respectively. Then x1 ∈ C
from ζ0 ∈ ∂D1, and similarly x2 ∈ C . Now all the holomorphic disks containing ζ0 are written in the above form, so
C equals to the union of such pairs of points. We define σ to be the involution on C interchanging two such points.

It is enough to show that every closed geodesic in S2 through x ∈ C always passes through x̄ = σ(x). This is,
however, obvious because each closed geodesic through x ∈ C corresponds to some point on ∂Dx = ∂Dx̄ under the
double fibration, so this geodesic also passes through x̄ . �
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Now we explain the following diagram as regards Theorem 37.

W+
p1

yysssssssssss q1

&&NNNNNNNNNNNN

S2 Wr
+

∪

pr
1

yytttttttttt

Π

��

qr
1

&&MMMMMMMMMMM CP2

S2
\ C

∪

$

��

D+ t D−
p0

yyssssssssss q0

&&NNNNNNNNNNN CP2
\ {ζ0} .

∪

π

��
{b±} CP1

(30)

Let D+ be one of the two holomorphic disks of (CP1,RP1) and let D− be the other one. Let q0 : D+ t D− → CP1

be the natural map. Let {b±} be a set consisting of two points, and define a map p0 by p0(D±) = b±. We define
Wr
+ = p−1

1 (S2
\ C), and let pr

1 and qr
1 be the restrictions of p1 and q1. Then Π and $ are naturally induced from

π so that the diagram commutes. Notice that $ maps each connected component of S2
\ C to one point. We define

S2
± = $

−1(b±).
From the proof of Theorem 37, each point ξ ∈ RP1 corresponds to a pair of antipodal points {x, x̄} of C via

CP1
ξ = Dx ∪ Dx̄ . Hence there is a natural isomorphism i : C/Z2

∼
→RP1. On the other hand, there is a natural map

µ : Wr
R → C/Z2 defined in the following way. Each point of Wr

R corresponds to a pair (x, l) of a point x ∈ S2
\ C

and a closed geodesic l on S2 containing x . Then we define µ(x, l) ∈ C/Z2 to be the intersection l ∩ C . We have
i ◦ µ = q0 ◦ΠR by definition, where ΠR is the restriction of Π toWr

R.
In this way, we have checked that Π :Wr

+→ D+ t D− satisfies the following conditions:

(51) Π is smooth and $ ◦ pr
1 = p0 ◦Π ,

(52) there is an isomorphism i : C/Z2 → RP1 satisfying i ◦ µ = q0 ◦ΠR,
(53) Π is holomorphic onWr

+ \Wr
R.

The next lemma says that such a map Π satisfying the above conditions is determined uniquely up to isomorphism.

Lemma 38. Let Π be the map given above, and let Π ′ :Wr
+→ D+tD− be a map which satisfies (51) to (53). Then

there is a holomorphic automorphism T on CP1 fixing D± and satisfying Π ′ = T̃ ◦Π , where T̃ is the automorphism
of D+ t D− induced from T .

Proof. Let i ′ : C/Z2 → RP2 be the map satisfying the condition (52) for Π ′, i.e. i ′ ◦ µ = q0 ◦ Π ′R. Let x ∈ S2
+ be

any point; then we have

i ◦ µx = q0 ◦ΠR,x , i ′ ◦ µx = q0 ◦Π ′R,x ,

where ΠR,x ,Π ′R,x and µx are restrictions of ΠR,Π ′R and µ onW+,x = p−1
1 (x). Since µx is bijective, we have

(q0 ◦Π ′R,x ) ◦ (q0 ◦ΠR,x )−1
= i ′ ◦ i−1. (31)

The left hand side of (31) extends holomorphically to the interior of D+, so i ′ ◦ i−1 extends to a holomorphic
automorphism on D+. In the same way, if we take x ∈ S−, we can check that i ′ ◦ i−1 extends to D− holomorphically;
hence there is a holomorphic automorphism T on CP1 fixing D± and satisfying Π ′x = T̃ ◦ Πx . Since T does not
depend on x ∈ S \ C , this is the required automorphism. �

Corollary 39. Suppose that a given map Π satisfies (51) to (53); then there is a unique continuous map π which
makes the diagram (30) commute. Such a map π is equivalent to the natural projection from ζ0.

Proof. The map Π satisfying the conditions (51) to (53) is essentially unique, and this is the one defined
from Theorem 37. So it follows that the natural projection π is the unique map which makes the diagram (30)
commute. �
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7. Proof of the main theorem

First we prove the following proposition.

Proposition 40. Let (M, [g], S∞,F) ∈ M be an element which is contained in f −1
M (U ) in the terminology of

Theorem 32. Then there is a unique element of T which satisfies the conditions in Theorem 32.

Let (M, [g], S∞,F) ∈ f −1
M (U ) be an element; then we have a totally real embedding ι : RP3

→ CP3

corresponding to (M, [g]) in the sense of Theorem 9. Let P = ι(RP3); then each point on P corresponds to some
β-surface, so we can define ζ0 ∈ P as the point corresponding to S∞.

Let $ : (M \ S∞) → B be the basic α-surface foliation induced from F . We have the standard Zoll projective
structure on B by Proposition 28. Then we have the following diagram:

(Z+,ZR)
p2

xxrrrrrrrrrrrr q2

((QQQQQQQQQQQQQ

M (Zr
+,Zr

R)

∪

pr
2

xxrrrrrrrrrr
Π

��

qr
2

((QQQQQQQQQQQQ (CP3, P)

M \ S∞

∪

$

��

(W+,WR)
p1

xxrrrrrrrrrrrr
q1

((QQQQQQQQQQQQQ
(q2(Zr

+), q2,R(Zr
R))

∪

π ′

��

⊂ (CP3
\ {ζ0}, P \ {ζ0})

π
uu

B (CP2,RP2)

(32)

where Z+ is the disk bundle over M defined in the manner of Section 3, Zr
+ = p−1

2 (M \ S∞) is its restriction and

W+ is the disk bundle over B defined in the manner of Section 2. Let B
p1
←W+

q1
→CP2 be the double fibration for the

standard Zoll projective structure on B.
Let LR be the distribution onWR as in Section 2, and let ER be the twistor distribution onZR as in Section 3. Then

the natural map Π : Zr
+→W+ is induced by the proof of Proposition 20, and Π is holomorphic onZr

+\Zr
R. We also

have Π∗(ER) = LR for the restriction ΠR of Π on Zr
R. Since q1 and q2 are the maps which collapse the foliations

defined by LR and ER, Π induces a continuous map π ′ : q2(Zr
+)→ CP2. We want to prove that π ′ smoothly extends

to the natural projection π : CP3
\{ζ0} → CP2, and that (CP1

ξ , Pξ ) is biholomorphic to (CP1,RP1) for each ξ ∈ RP2,
where CP1

ξ = π
−1(ξ) ∪ {ζ0} and Pξ = CP1

ξ ∩ P .
We study π ′ in more detail. Let α be an α-surface in F , and let Cα = α∩ S∞. If we put α \Cα = α+tα−, then α+

and α− are two leaves of the α-surface foliation $ : M \ S∞ → B. If we put b± = $(α±), then {b+, b−} is the set
of antipodal points on B by Proposition 29 and so on. So the corresponding holomorphic disks Db± = q1 ◦ p−1

1 (b±)
have a common boundary, and CP1

α = Db+ ∪ Db− is a complex line in CP2. Then we obtain the following diagram
as the restriction of (32):

Z+|α
pα2

yyrrrrrrrrrrrr qα2

''OOOOOOOOOOOOO

∪

α

∪

Zr
+|α\Cα

yyrrrrrrrrrr
Πα

�� ''OOOOOOOOOOO
Qα

∪

α \ Cα

$α

��

Db+ t Db−

yyssssssssss

''NNNNNNNNNNNN
q2(Zr

+|α\Cα )

π ′α
��

Qα \ {ζ0}⊂

πα
xx

{b±} CP1
α

(33)

where Z+|α = p−1
2 (α),Zr

+|α\Cα = p−1
2 (α \ Cα), Qα = q2 ◦ p−1

2 (α), and so on.
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Since Cα is a closed geodesic on S∞ with respect to the standard Zoll projective structure, Cα has a natural
involution which is the restriction of the involution on S∞ exchanging the antipodal points. Hence (α, [∇],Cα) defines
an element ofM′, where [∇] is the Zoll projective structure on α defined by Lemma 23.

Lemma 41. (i) Z◦+|α = (Z+|α) \ (ZR|α) is a complex submanifold of Z◦+ = Z+ \ ZR.(ii) The double fibration
α← Z+|α → Qα equals the double fibration for the Zoll projective structure on α given by Theorem 3. Consequently,
Qα is biholomorphic to CP2.

Proof. Let Wα
= P(Tα ⊗ C), and we define Wα

± as in Section 2, where Wα
= Wα

+ ∪Wα
−. First we construct

a diffeomorphism ρ : Wα
+

∼
→Z+|α . Let x ∈ α be any point, and take a null tetrad {e0, e1, φ0, φ1} on an open

neighborhood U ⊂ M of x so that Tα = 〈φ0, φ1〉. We can define diffeomorphisms Wα
|U∩α

∼
←CP1

× (U ∩
α)
∼
→Z|U∩α by using the trivializations of Wα given by (1) and of Z given by (12). In other words, this map is

characterized as the correspondence between a complex tangent line l of α and a complex β-plane β so that l ⊂ β,
i.e.

〈φ0 + ζφ1〉 ←→ 〈e0 + ζe1, φ0 + ζφ1〉 .

This diffeomorphism does not depend on the choice of the null tetrad; hence we obtain a global diffeomorphism
Wα ∼
→Z|α . We define ρ to be the restriction of this diffeomorphism onWα

+.
We now check thatZ◦+|α is a complex submanifold ofZ◦+. The complex structure onZ◦+ is defined so that the (0,1)-

vector space is K = 〈m1,m2, ∂̄ζ 〉, where m1 and m2 are the horizontal lifts of e0 + ζe1 and φ0 + ζφ1 respectively.
On the other hand, the complex structure on Wα ◦

+ is defined so that the (0,1)-vector space is K = 〈n, ∂̄ζ 〉, where n is
the horizontal lift of φ0 + ζφ1. Then we obtain ρ∗(n) = m2 and ρ∗(∂̄ζ ) = ∂̄ζ ; hence ρ is holomorphic on the interior
ofWα

+.
By a similar argument, we can check (ρR)∗(LR) = ER ∩ Tα for the restriction of ρ on Wα

R. This means that
q : Z+|α → Qα is the map which appears in the double fibration for the Zoll projective structure in the sense of
Theorem 3. �

Lemma 42. CP2
' Qα ⊂ CP3 is a complex submanifold.

Proof. Let Qα,R = q2(ZR|α). By Lemma 41, Qα \ Qα,R ⊂ CP3
\ P is a complex submanifold. So it is enough to

check that, for each point ζ ∈ Qα,R, there is an open neighborhood in Qα which is a complex submanifold of CP3.
Notice that Qα,R ⊂ P is a smooth real submanifold. This follows from the facts that qα2,R : ZR|α → Qα,R is an

S1-bundle, that q2,R : ZR → P is an S2-bundle, and that each fiber of qα2,R is contained in some fiber of q2,R as a
smooth real submanifold.

We want to show that

Tζ Qα = Tζ Qα,R ⊕ J (Tζ Qα,R) (34)

for each ζ ∈ Qα,R, where J is the complex structure on CP3. Originally J is defined in the following manner (cf. [8],
proof of Theorem 7.3). We can take a non-vanishing vector field u on ZR which spans ker(p2,R)∗ at every point.
Moreover we can assume that j (u) directs the interior of Z+ where j is the fiberwise complex structure of Z with
respect to the CP1-bundle p2. Then J is defined as the linear transform satisfying J (q2∗(u)) = q2∗( j (u)). Now
Eq. (34) follows directly from this definition. �

Lemma 43. Πα satisfies the conditions (51) to (53).

Proof. It is obvious that Πα satisfies (51) and (53), so we check (52). Let S∞/Z2 be the set of pairs of antipodal
points on S∞, and we define a bijection I : S∞/Z2 → RP2 by the following. For each [x] ∈ S∞/Z2, the set of closed
geodesics through x defines a geodesic on B = G̃(S∞). Then we define I ([x]) ∈ RP2 to be the point corresponding
to this geodesic in the double fibration B

p1
←(W+,WR)

q1
→(CP2,RP2).

Since Cα = α ∩ S∞, we can define iα : Cα/Z2 → RP1
α as the restriction of I . Then we have iα([x]) ∈ RP1

α from
the definition, and we have iα ◦ µ = q1 ◦ Πα,R. Actually, for example on α+, each point z ∈ ZR|α+ corresponds
to a pair (x, c) of a point x ∈ α+ and a closed geodesic c on α through x . Then we have µ(z) = [c ∩ S∞] by
definition. Hence iα ◦ µ(z) = I ([c ∩ S∞]). On the other hand, let βc be the unique β-surface containing c; then
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Πα,R(z) = ΠR(z) ∈ WR is the point defined by (b+,$(βc)), where b+ = $(x) and $(βc) is a closed geodesic on
B. Hence we have q1◦Πα,R(z) = I ([βc∩S∞]) from the meaning of the double fibration for B. Since c∩S∞ = βc∩S∞,
we obtain iα ◦ µ = q1 ◦Πα,R. �

Corollary 44. π ′α continuously and uniquely extends to πα : Qα \ {ζ0} → CP1, and πα is equivalent to the natural
projection from ζ0.

Proof. Directly follows from Corollary 39. �

Lemma 45. There is a unique continuous extension π : CP3
\ {ζ0} → CP2 of π ′ : q2(Zr

+)→ CP2.

Proof. Since q2(Zr
+) is dense in CP3

\ {ζ0}, the continuous extension is unique if it exists. So we prove the existence.
For an element ζ 6∈ q2(Zr

+), we define π(ζ ) as follows. There is a unique x ∈ S∞ such that ζ ∈ Dx , where
Dx = q2 ◦ p−1

2 (x). Let α ∈ F be an α-surface through x ; then ζ ∈ Qα and we put π(ζ ) = πα(ζ ). Then π(ζ ) does
not depend on the choice of α, since πα(ζ ) = iα([x]) = I (x) from the proof of Lemma 43.

Now we check that the above π is continuous. First, notice that ∪α Qα = CP3. Actually, for any ζ ∈ CP3, we
can take x ∈ M so that x ∈ p2 ◦ q−1

2 (ζ ), and if we take any α ∈ F through x , then we obtain ζ ∈ Qα . Since π is
continuous on each Qα , π is continuous on CP3

\ {ζ0}. �

Lemma 46. For each ξ ∈ CP2, lξ = π−1(ξ)∪ {ζ0} is a complex line in CP3. In consequence, π : CP3
\ {ζ0} → CP2

is the projection.

Proof. For each ξ ∈ CP2, there is at least one α ∈ F such that ξ ∈ CP1
α . Since π−1(ξ) = π−1

α (ξ) from the definition
of π , lξ = π−1

α (ξ) ∪ {ζ0} is a complex line in Qα ' CP2 by Corollary 44. Moreover lξ is a rational curve in CP3 by
Lemma 42.

Let ξ ′ ∈ CP1
α be a point different from ξ ; then lξ ′ is a rational curve in CP3. lξ and lξ ′ are the complex lines in

Qα ' CP2 which intersect only at ζ0. Since Qα ⊂ CP3 is an embedding, lξ and lξ ′ intersect only at ζ0 in CP3, and
the intersection is a node. Hence lξ and lξ ′ are complex lines in CP3. �

Proof (Proof of 40). For given (M, [g], S∞,F), we already have a totally real embedding ι : RP3
→ CP3 and

ζ0 ∈ P = ι(RP3) which satisfies π(P \ {ζ0}) = RP2 for the standard projection π : CP3
\ {ζ0} → CP2. For each

ξ ∈ RP2, we put {x, x̄} = I−1(ξ) which is the set of antipodal points of S∞. Let Dx and Dx̄ be the holomorphic disks
corresponding to x and x̄ ; then we have lξ = CP1

ξ = Dx ∪ Dx̄ . Since Pξ = ∂Dx = ∂Dx̄ , (CP1
ξ , Pξ ) is biholomorphic

to (CP1,RP1). Hence (ι, ζ0) is an element of T and this satisfies the required conditions in Theorem 32. �

Next we prove the opposite direction of the main theorem.

Proposition 47. Let (ι, ζ0) ∈ T be an element which is contained in f −1
T (V ) in the terminology of Theorem 32. Then

there is a unique element of M which satisfies the conditions in Theorem 32.

Let (ι, ζ0) ∈ f −1
T (V ), P = ι(RP3), and π : (CP3

\ {ζ0}, P \ {ζ0})→ (CP2,RP2) be the projection.
By Theorem 9, we have a space–time oriented self-dual Zollfrei conformal structure (M, [g]) and a double fibration

M
p2
←Z+

q2
→CP3 so that q2,R(ZR) = P . Each point x ∈ M corresponds to the holomorphic disk Dx = q2 ◦ p−1

2 (x)
in (CP3, P), and each point ζ ∈ P corresponds to the β-surface p2 ◦ q−1

2 (ζ ) on M . We define S∞ to be the β-surface
corresponding to the point ζ0 ∈ P . Notice that, for each x ∈ M \ S∞, we obtain ζ0 6∈ Dx , i.e. Dx is a holomorphic
disk in (CP3

\ {ζ0}, P \ {ζ0}).
Let B

p1
←(W+,WR)

q1
→(CP2,RP2) be the double fibration given by Theorem 3. Each point in B corresponds to

some holomorphic disk in (CP2,RP2), and B is equipped with the standard Zoll projective structure.
Let B/Z2 be the set of pairs of antipodal points in B. Let b ∈ B/Z2 be a pair of antipodal points {b+, b−}; then the

corresponding holomorphic disks Db± have a common boundary, so CP1
b = Db+ ∪ Db− is a complex line in CP2. If

we put Qb = π
−1(CP1

b) ∪ {ζ0}, then Qb is a complex plane in CP3, since π is the projection. We put Nb = P ∩ Qb.

Lemma 48. (Qb, Nb) and ζ0 define an element of T0.
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Proof. Nb is the one-point compactification of π−1
R (RP1

b), where RP1
b = RP2

∩CP1
b and πR : P \ {ζ0} → RP2 is the

restriction of π . Since πR is a non-trivial R-fibration, Nb is an embedded RP2 in Qb. Since ζ0 ∈ Nb, and since the
second condition in Definition 35 obviously holds, (Nb, ζ0) defines an element of T0. �

From Lemma 48, we obtain a diagram similar to (30):

W+(b)
p1(b)

xxqqqqqqqqqqq
q1(b)

&&NNNNNNNNNNNN

∪

α(b)

∪

Wr
+(b)

xxqqqqqqqqqqq
Πb

�� &&NNNNNNNNNNN
Qb

∪

α(b) \ Cb

$b

��

Db+ t Db−

xxqqqqqqqqqqq

&&MMMMMMMMMMM
Qb \ {ζ0} .

π

��
{b±} CP1

b

(35)

Lemma 49. There is a natural injection α(b) → M. Moreover there is a smooth map $ : M \ S∞ → B such that
the restriction of $ on α(b) is equal to $b.

Proof. Let p ∈ α(b) be a point and Dp = q1(b) ◦ p1(b)−1(p) be the corresponding holomorphic disk in (Qb, Nb).
Let Lb = {Dp}p∈α(β) be the family of such holomorphic disks in (Qb, Nb); then Lb foliates Qb \ Nb. We will soon
show that ∪b Lb defines a family of holomorphic disks in (CP3, P) foliating CP3

\ P; then it follows that α(b) is a
subset of the moduli space M of holomorphic disks. Moreover, $ is naturally induced as the map between the sets of
holomorphic disks, so this is smooth and $ |α(b) = $b.

Now we prove that ∪b Lb foliates CP3
\ P . For distinct points b, b′ ∈ B/Z2, CP1

b ∩ CP1
b′ consists of one point

ξ ∈ RP2. Then Qb ∩ Q′b = π
−1(ξ) ∪ {ζ0} = CP1

ξ . If we put Pξ = CP1
ξ ∩ P , then (CP1

ξ , Pξ ) is biholomorphic to
(CP1,RP1) by definition. So we can write CP1

ξ = D1∪D2, where ∂D1 = ∂D2 = Pξ . As in the proof of Theorem 37,
the Di (i = 1, 2) are contained in Lb and Lb′ . Hence Lb ∪Lb′ foliates (Qb ∪ Qb′) \ (Nb ∪ Nb′). Since ∪b Qb = CP3,
it follows that ∪b Lb foliates CP3

\ P . �

It follows from Lemma 49 that the diagram (35) is the restriction of the diagram (32), i.e. W+(b) = q−1
2 (Qb) =

p−1
2 (α(b)), p1(b) = p2|W+(b) = q2|W+(b) and so on. Now we put F = {α(b)}b∈B/Z2 which is a family of embedded

2-spheres in M . Each α(b) has a Zoll projective structure defined by Theorem 37 and Lemma 48.

Lemma 50. α(b) is a closed α-surface.

Proof. Each closed geodesic on α(b) is written in the form

C(ζ ) = p1(b) ◦ q1(b)−1(ζ )

for some ζ ∈ Nb, while each β-surface is written in the form β(ζ ) = p2 ◦ q−1
2 (ζ ) for some ζ ∈ P . Hence each

closed geodesic on α(b) is contained in some β-surface. So α(b) is totally null. Since a totally null surface is either
an α-surface or a β-surface, and since α(b) is not a β-surface, this is an α-surface. �

Proof (Proof of 47). For given (ι, ζ0), we take (M, [g], S∞,F) as above. For each α(b) ∈ F , α(b) ∩ S∞ = Cb is
always non-empty. F defines a smooth foliation on M \ S∞; hence (M, [g], S∞,F) is an element ofM. This element
satisfies the conditions in Theorem 32. �

Theorem 32 follows from Propositions 40 and 47.
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Appendix A. Self-dual foliation

In Section 5, we argued on a basic α-surface foliation, while Calderbank considered a self-dual α-surface foliation
in [2]. Here we check that these conditions are equivalent in the assumption of the self-duality condition of the metric.

Let (M, g) be a 4-manifold with a neutral metric and let S− be the negative spin bundle; then an α-plane distribution
on M one-to-one corresponds with a subbundle l : L → S−.

If we fix l : L → S− and take a connection ∇ on L , then we have the covariant derivative operator
D∇ : Γ (S− ⊗ L∗) → Γ (T M ⊗ S− ⊗ L∗). Noticing the identification T ∗M ∼= S+∗ ⊗ S−∗ ∼= S+ ⊗ S−, we
put T ∗M � S− = S+ ⊗ (S− � S−), where S− � S− is the symmetric tensor. We obtain the twistor operator
T ∇ : Γ (S− ⊗ L∗)→ Γ (T M � S− ⊗ L∗) by composing the symmetrization with the covariant derivative D∇ .

Definition 51 (Cf. [2]). A connection ∇ on L is called canonical if and only if it satisfies T ∇l = 0. An α-surface
foliation $ is called self-dual if and only if, for the corresponding subbundle l : L → S−, (i) there is a canonical
connection ∇ on L , and (ii) ∇ is self-dual.

The following property is explained in [2]; however we give the proof again by using an explicit description.

Proposition 52. Let l : L → S− be a subbundle; then the α-surface distribution corresponding to l is integrable if
and only if the canonical connection on L exists. The canonical connection is unique if it exists.

Proof. Since the conditions are entirely local, we can assume that S− = M ×R2 and L = M ×R are trivial bundles,
and that l : L → S− is a constant section l =

(
0
1

)
∈ Γ (S− ⊗ L∗). Let

(
e0 φ0
e1 φ1

)
be a null tetrad respecting the

trivialization of S−; then the α-plane distribution corresponding to l is given by 〈φ0, φ1〉.
We denote the Levi-Civita connection of g in the same way as in (10). Let ∇ be a connection on L represented by

a connection 1-form τ ; then the equation T ∇l = 0 is decomposed into the following equations:

(
a + d

2
+ τ

)
(eA) = 0,

e(eA)+

(
a + d

2
+ τ

)
(φA) = 0,

e(φA) = 0,

(A = 0, 1). (36)

So the canonical connection on L exists if and only if e(φ0) = e(φ1) = 0. This holds if and only if the α-plane
distribution 〈φ0, φ1〉 is integrable as in (18). The uniqueness of the canonical connection is obvious from (36). �

Lemma 53. Let (M, g) be a 4-manifold with a neutral metric g and $ : M → B be an α-surface foliation. Then $
is self-dual if and only if the following equations hold:

φ0(a + d)(e0) = φ1(a + d)(e1) = 0,
φ0a(e1)+ φ1a(e0) = −(φ0d(e1)+ φ1d(e0)).

(37)

Proof. Take a null tetrad as in Proposition 10. Since this null tetrad fits with the proof of Proposition 52, the canonical
connection is defined by the 1-form τ satisfying (36). This connection is self-dual if and only if

dτ(e0 ∧ φ0) = dτ(e1 ∧ φ1) = dτ(e0 ∧ φ1 + e1 ∧ φ0) = 0,

and it is equivalent to (37), since e = 0 by Lemma 13. �

Proposition 54. Let (M, g) be a 4-manifold with a neutral self-dual metric and $ : M → B be an α-surface
foliation. Then $ is self-dual if and only if it is basic.
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Proof. We take the coordinate as in Proposition 15, and define g as the form (23). If we take a null tetrad as in (25),
then each element of the connection form is given by (37). Noticing (24), $ is self-dual if and only if

∂2∂3 p = ∂2∂3q = ∂2
3 p = ∂2

2 q = ∂2
2r = ∂2

2r = 0. (38)

This is equivalent to the basic condition (27). �

Appendix B. Null conformal Killing vector field

Here we treat the case of Dunajski and West, i.e. the case when there is a null conformal Killing vector field on
(M, g). Our method is a little far from the general treatment of twistor theory (cf. [13]), but the calculations are easier.

Definition 55. Let (M, g) be a 4-manifold with a neutral metric; then a vector field K on M is called the conformal
Killing vector field when there is a function η on M satisfying LK (g) = ηg.

Notice that this condition depends only on the conformal structure on M .

Proposition 56 ([4]). Let K be a null conformal Killing vector field on (M, [g]); then there is a unique α-plane
distribution and a unique β-plane distribution on M which contains K , and these distributions are both integrable.

For the proof of this, see [4] Lemma 1, and the remark following it.
Let (M, g) be as above and K be a null conformal Killing vector field on M . From Proposition 56, M has an

α-surface foliation. Taking M smaller, we can assume that the leaf space B of this α-surface foliation is a two-
dimensional manifold. Then we can take the coordinates and the null tetrad as in Proposition 10. Now, since K is a
section of the α-surface distribution, we can write

K = K 0φ0 + K 1φ1 (39)

with some functions K 0 and K 1. We use the same description for the Levi-Civita connection as in (10), and, for
simplicity, we write a(ei ) = ai and so on.

Lemma 57. A null vector field K = K 0φ0+ K 1φ1 is a conformal Killing vector field if and only if there is a function
η on M and the following conditions hold:

φ0 K 1
= φ1 K 0

= 0
φ0 K 0

= φ1 K 1
= η

e0 K 1
+ b0 K 0

− a0 K 1
= 0

e1 K 0
− d1 K 0

+ b1 K 1
= 0

e0 K 0
− d0 K 0

+ b0 K 1
= e1 K 1

+ b1 K 0
− a1 K 1.

(40)

Proof. Direct calculation from LK g = ηg. �

Lemma 58. Let (M, [g]) be a neutral self-dual conformal structure, and K be a null conformal Killing vector field
on M; then

φ0a1 + φ1a0 = φ0d1 + φ1d0 = 0, φ0a0 = φ1d1 = 0, φ0b1 = φ1b0 = 0. (41)

Proof. Differentiating (40), and using (17), we have
e0η = −(φ1b0)K 0

+ (φ1a0)K 1,

e1η = (φ0d1)K 0
− (φ0b1)K 1,

e0η = (φ0(d0 + b1))K 0
− (φ0a1)K 1,

e1η = −(φ1d0)K 0
+ (φ1(a1 + b0))K 1.

(42)

Comparing these equations, and from (22), we obtain the first and the second equation of (41). Operating with φ0 on
the first of (42), and with φ1 on the second, we have (φ1b0)η = (φ0b1)η = 0. We can assume η 6= 0 by changing the
metric in the conformal class [g], so we have φ0b1 = φ1b0 = 0. �
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Theorem 59. The α-plane distribution defined by Proposition 56 is basic.

Proof. Condition (27) is obtained directly from (41). Hence this distribution is basic. �
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